BOSS 7.1.1
BESIII Offline Software System
Loading...
Searching...
No Matches
D0ToKLpipi2018.cxx
Go to the documentation of this file.
2#include <stdlib.h>
3#include <iostream>
4#include <string>
5#include <complex>
6#include <vector>
7#include <math.h>
8#include "TMath.h"
9
10#include "CLHEP/Random/RandFlat.h"
11#include "CLHEP/Matrix/Vector.h"
12#include "CLHEP/Matrix/Matrix.h"
13#include "CLHEP/Matrix/SymMatrix.h"
14#include "CLHEP/Vector/ThreeVector.h"
15#include "CLHEP/Vector/LorentzVector.h"
16#include "CLHEP/Vector/TwoVector.h"
17using CLHEP::HepVector;
18using CLHEP::Hep3Vector;
19using CLHEP::Hep2Vector;
20using CLHEP::HepLorentzVector;
21
22using namespace std; //::endl;
23
25
27 //std::cout << "D0ToKLpipi2018 ==> Initialization !" << std::endl;
28
29 _nd = 3;
30 tan2thetaC = (0.22650*0.22650)/(1.-(0.22650*0.22650)) ; //sin(theta_C) = 0.22650 +/- 0.00048
31 pi180inv = 1.0*3.1415926/180;
32
33 double Pi = 3.1415926;
34
35 mass_R[0]= 0.77155; width_R[0]= 0.13469; spin_R[0]= 1; ar[0]= 1; phir[0]= 0;
36 mass_R[1]= 0.78265; width_R[1]= 0.00849; spin_R[1]= 1; ar[1]= 0.038791; phir[1]= (180./Pi)*2.1073;
37 mass_R[2]= 1.27510; width_R[2]= 0.18420; spin_R[2]= 2; ar[2]= 1.42887; phir[2]= (180./Pi)*-0.633296;
38 mass_R[3]= 1.46500; width_R[3]= 0.40000; spin_R[3]= 1; ar[3]= 2.85131; phir[3]= (180./Pi)*1.7820801;
39 mass_R[4]= 0.89371; width_R[4]= 0.04719; spin_R[4]= 1; ar[4]= 1.72044; phir[4]= (180./Pi)*2.38835877;
40 mass_R[5]= 1.42560; width_R[5]= 0.09850; spin_R[5]= 2; ar[5]= 1.27268; phir[5]= (180./Pi)*-0.769095;
41 mass_R[6]= 1.71700; width_R[6]= 0.3220; spin_R[6]= 1; ar[6]= 3.307642; phir[6]= (180./Pi)*-2.062227;
42 mass_R[7]= 1.41400; width_R[7]= 0.2320; spin_R[7]= 1; ar[7]= 0.286927; phir[7]= (180./Pi)*1.7346186;
43 mass_R[8]= 0.89371; width_R[8]= 0.04719; spin_R[8]= 1; ar[8]= 0.1641792;phir[8]= (180./Pi)*-0.735903;
44 mass_R[9]= 1.42560; width_R[9]= 0.0985; spin_R[9]= 2; ar[9]= 0.1025736;phir[9]= (180./Pi)*-1.56397;
45 mass_R[10]= 1.41400; width_R[10]= 0.2320; spin_R[10]= 1; ar[10]= 0.2090326;phir[10]= (180./Pi)*2.6208986;
46 ////////////////////////////////////////
47 mass_R[11]= 1.42500; width_R[11]= 0.2700; spin_R[11]= 1; ar[11]= 2.36; phir[11]= 99.4;//not found
48 // beta[kb] = EvtComplex(mag*cos(phase*pi180inv), mag*sin(phase*pi180inv)) ;
49 // fprod[kf] = EvtComplex(mag*cos(phase*pi180inv), mag*sin(phase*pi180inv)) ;
50 beta[0] = complex<double>( 8.521486*cos( 1.195641 ), 8.521486*sin( 1.195641));//
51 beta[1] = complex<double>( 12.1895 *cos( 0.41802), 12.1895 *sin( 0.41802));
52 beta[2] = complex<double>(29.14616 *cos(-0.0018386 ), 29.14616 *sin(-0.0018386 ));
53 beta[3] = complex<double>(10.745735 *cos(-0.9057014 ), 10.745735 *sin(-0.9057014 ));
54 beta[4] = complex<double>(0., 0.);
55
56 fprod[0] = complex<double>(8.04427*cos(-2.19847), 8.04427*sin(-2.19847));
57 fprod[1] = complex<double>(26.2986*cos(-2.65853), 26.2986*sin(-2.65853));
58 fprod[2] = complex<double>(33.0349*cos(-1.62714), 33.0349*sin(-1.62714));
59 fprod[3] = complex<double>(26.1741*cos(-2.11891), 26.1741*sin(-2.11891));
60 fprod[4] = complex<double>(0., 0.);
61
62 //CP_mult[w] = (EvtComplex(1., 0.) - 2.*tan2thetaC*EvtComplex(r*cos(delta), r*sin(delta))) ;
63 CP_mult[0] = complex<double>(1.,0.)-2.*tan2thetaC*complex<double>(1.851 *cos(-94.07 *pi180inv),1.851 *sin(-94.07 *pi180inv));
64 CP_mult[1] = complex<double>(1.,0.)-2.*tan2thetaC*complex<double>(6.332 *cos(2.103 *pi180inv),6.332 *sin(2.103 *pi180inv));
65 CP_mult[2] = complex<double>(1.,0.)-2.*tan2thetaC*complex<double>(3.229 *cos(-60.05 *pi180inv),3.229 *sin(-60.05 *pi180inv));
66 CP_mult[3] = complex<double>(1.,0.)-2.*tan2thetaC*complex<double>(12.75 *cos(73.62 *pi180inv),12.75 *sin(73.62 *pi180inv));
67 CP_mult[4] = complex<double>(1.,0.)-2.*tan2thetaC*complex<double>(0.7116*cos(-177.149*pi180inv),0.7116*sin(-177.149*pi180inv));
68
69 ma[0]= 0.651; g[0][0]= 0.22889; g[0][1]= -0.55377; g[0][2]= 0; g[0][3]= -0.39899; g[0][4]= -0.34639;
70 ma[1]= 1.20360; g[1][0]= 0.94128; g[1][1]= 0.55095; g[1][2]= 0; g[1][3]= 0.39065; g[1][4]= 0.31503;
71 ma[2]= 1.55817; g[2][0]= 0.36856; g[2][1]= 0.23888; g[2][2]= 0.55639; g[2][3]= 0.18340; g[2][4]= 0.18681;
72 ma[3]= 1.21000; g[3][0]= 0.33650; g[3][1]= 0.40907; g[3][2]= 0.85679; g[3][3]= 0.19906; g[3][4]= -0.00984;
73 ma[4]= 1.82206; g[4][0]= 0.18171; g[4][1]= -0.17558; g[4][2]= -0.79658; g[4][3]= -0.00355; g[4][4]= 0.22358;
74
75 // Hadronic parameters for tag modes: 0=no-specified, 1=Kpi, 2=Kpipi0, 3=K3pi
76 rd[0] = 0.0;
77 rd[1] = 0.0586;
78 rd[2] = 0.0440;
79 rd[3] = 0.0546;
80 deltad[0] = 0.0;
81 deltad[1] = 194.7*pi180inv;
82 deltad[2] = 196.0*pi180inv;
83 deltad[3] = 167.0*pi180inv;
84 Rf[0] = 0.0;
85 Rf[1] = 1.0;
86 Rf[2] = 0.78;
87 Rf[3] = 0.52;
88
89 return;
90}
91
92complex<double> D0ToKLpipi2018::Amp_PFT(vector<double> k0l, vector<double> pip, vector<double> pim) {
93
94 vector<double> pD;pD.clear();
95 if(k0l.size()!=4||pip.size()!=4||pim.size()!=4)cout<<"ERROR in KSPIPI daughter 4 momentum"<<endl;
96 for(int i=0;i<k0l.size();i++){
97 pD.push_back(k0l[i] + pip[i] + pim[i]);
98 }
99
100 //EvtResonance2 DK2piRes0(pD, pip, pim, ar[0], phir[0], width_R[0], mass_R[0], spin[0]); //ar, phir, width, mass, spin //Rho770
101 //EvtResonance2 DK2piRes1(pD, pip, pim, ar[1], phir[1], width_R[1], mass_R[1], spin[1]); //ar, phir, width, mass, spin //Omega782
102 //EvtResonance2 DK2piRes2(pD, pip, pim, ar[2], phir[2], width_R[2], mass_R[2], spin[2]); //ar, phir, width, mass, spin //ftwo1270
103 //EvtResonance2 DK2piRes3(pD, pip, pim, ar[3], phir[3], width_R[3], mass_R[3], spin[3]); //ar, phir, width, mass, spin //Rho1450
104 //EvtResonance2 DK2piRes4(pD, k0l, pim, ar[4], phir[4], width_R[4], mass_R[4], spin[4]); //ar, phir, width, mass, spin //Kstar892minus
105 //EvtResonance2 DK2piRes5(pD, k0l, pim, ar[5], phir[5], width_R[5], mass_R[5], spin[5]); //ar, phir, width, mass, spin //K2star1430minus
106 //EvtResonance2 DK2piRes6(pD, k0l, pim, ar[6], phir[6], width_R[6], mass_R[6], spin[6]); //ar, phir, width, mass, spin //Kstar1680minus
107 //EvtResonance2 DK2piRes7(pD, k0l, pim, ar[7], phir[7], width_R[7], mass_R[7], spin[7]); //ar, phir, width, mass, spin //Kstar1410minus
108 //EvtResonance2 DK2piRes8(pD, k0l, pip, ar[8], phir[8], width_R[8], mass_R[8], spin[8]); //ar, phir, width, mass, spin //Kstar892plus
109 //EvtResonance2 DK2piRes9(pD, k0l, pip, ar[9], phir[9], width_R[9], mass_R[9], spin[9]); //ar, phir, width, mass, spin //K2star1430plus
110 //EvtResonance2 DK2piRes10(pD, k0l, pip, ar[10], phir[10], width_R[10], mass_R[10], spin[10]); //ar, phir, width, mass, spin //Kstar1410plus
111 complex<double> DK2piRes0 = Resonance2(pD, pip, pim, ar[0], phir[0], width_R[0], mass_R[0], spin_R[0]); //ar, phir, width, mass, spin Rho770
112 complex<double> DK2piRes1 = Resonance2(pD, pip, pim, ar[1], phir[1], width_R[1], mass_R[1], spin_R[1]); //ar, phir, width, mass, spin Omega782
113 complex<double> DK2piRes2 = Resonance2(pD, pip, pim, ar[2], phir[2], width_R[2], mass_R[2], spin_R[2]); //ar, phir, width, mass, spin ftwo1270
114 complex<double> DK2piRes3 = Resonance2(pD, pip, pim, ar[3], phir[3], width_R[3], mass_R[3], spin_R[3]); //ar, phir, width, mass, spin Rho1450
115 complex<double> DK2piRes4 = Resonance2(pD, k0l, pim, ar[4], phir[4], width_R[4], mass_R[4], spin_R[4]); //ar, phir, width, mass, spin Kstar892-
116 complex<double> DK2piRes5 = Resonance2(pD, k0l, pim, ar[5], phir[5], width_R[5], mass_R[5], spin_R[5]); //ar, phir, width, mass, spin K2star1430-
117 complex<double> DK2piRes6 = Resonance2(pD, k0l, pim, ar[6], phir[6], width_R[6], mass_R[6], spin_R[6]); //ar, phir, width, mass, spin Kstar1680-
118 complex<double> DK2piRes7 = Resonance2(pD, k0l, pim, ar[7], phir[7], width_R[7], mass_R[7], spin_R[7]); //ar, phir, width, mass, spin Kstar1410-
119 complex<double> DK2piRes8 = Resonance2(pD, k0l, pip, ar[8], phir[8], width_R[8], mass_R[8], spin_R[8]); //ar, phir, width, mass, spin Kstar892+
120 complex<double> DK2piRes9 = Resonance2(pD, k0l, pip, ar[9], phir[9], width_R[9], mass_R[9], spin_R[9]); //ar, phir, width, mass, spin K2star1430+
121 complex<double> DK2piRes10 = Resonance2(pD, k0l, pip, ar[10], phir[10], width_R[10], mass_R[10], spin_R[10]); //ar, phir, width, mass, spin Kstar1410+
122
123 complex<double> pipi_s_wave = K_matrix(pip, pim) ;
124 if(pipi_s_wave == complex<double>(9999., 9999.)) return 1e-20 ;
125
126 complex<double> kpi_s_wave = amplitude_LASS(k0l, pip, pim, "k0lpim", ar[11], phir[11]*pi180inv) ;
127 //complex<double> kpi_s_wave_dcs = amplitude_LASS(k0l, pip, pim, "k0spip", ar[12], phir[12]*pi180inv) ; should be there but not observed yet GUESS
128
129 complex<double> TOT_PFT_AMP = DK2piRes0 * CP_mult[0]
130 + DK2piRes1 * CP_mult[1]
131 + DK2piRes2 * CP_mult[2]
132 + DK2piRes3 * CP_mult[3]
133 + DK2piRes4
134 + DK2piRes5
135 + DK2piRes6
136 + DK2piRes7
137 + DK2piRes8 * (-1.)
138 + DK2piRes9 * (-1.)
139 + DK2piRes10* (-1.)
140 + pipi_s_wave * CP_mult[4]
141 + kpi_s_wave ;
142
143
144 return TOT_PFT_AMP;
145
146}
147
148complex<double> D0ToKLpipi2018::Resonance2(vector<double> p4_p, vector<double> p4_d1, vector<double> p4_d2, double mag, double theta, double gamma, double bwm, int spin) {
149
150 complex<double> ampl;
151
152 //EvtVector4R p4_d3 = p4_p - p4_d1 - p4_d2;
153 HepLorentzVector _p4_p;_p4_p.setX(p4_p[0]);_p4_p.setY(p4_p[1]);_p4_p.setZ(p4_p[2]);_p4_p.setT(p4_p[3]);
154 HepLorentzVector _p4_d1;_p4_d1.setX(p4_d1[0]);_p4_d1.setY(p4_d1[1]);_p4_d1.setZ(p4_d1[2]);_p4_d1.setT(p4_d1[3]);
155 HepLorentzVector _p4_d2;_p4_d2.setX(p4_d2[0]);_p4_d2.setY(p4_d2[1]);_p4_d2.setZ(p4_d2[2]);_p4_d2.setT(p4_d2[3]);
156 HepLorentzVector _p4_d3=_p4_p-_p4_d1-_p4_d2;
157
158
159 double mAB= (_p4_d1 + _p4_d2).invariantMass();
160 double mBC= (_p4_d2 + _p4_d3).invariantMass();
161 double mAC= (_p4_d1 + _p4_d3).invariantMass();
162 double mA = _p4_d1.invariantMass();
163 double mB = _p4_d2.invariantMass();
164 double mD = _p4_p.invariantMass();
165 double mC = _p4_d3.invariantMass();
166
167
168 double mR = bwm;
169 double gammaR = gamma;
170 double pAB = sqrt( (((mAB*mAB-mA*mA-mB*mB)*(mAB*mAB-mA*mA-mB*mB)/4.0) - mA*mA*mB*mB)/(mAB*mAB));
171 double pR = sqrt( (((mR*mR-mA*mA-mB*mB)*(mR*mR-mA*mA-mB*mB)/4.0) - mA*mA*mB*mB)/(mR*mR));
172
173 double pD= (((mD*mD-mR*mR-mC*mC)*(mD*mD-mR*mR-mC*mC)/4.0) - mR*mR*mC*mC)/(mD*mD);
174 if ( pD>0 ) { pD = sqrt(pD); }
175 else { pD = 0;}
176 double pDAB=sqrt( (((mD*mD-mAB*mAB-mC*mC)*(mD*mD-mAB*mAB-mC*mC)/4.0) - mAB*mAB*mC*mC)/(mD*mD));
177 double fR = 1;
178 double fD = 1;
179 int power = 0;
180 switch (spin) {
181 case 0:
182 fR = 1.0;
183 fD = 1.0;
184 power = 1;
185 break;
186 case 1:
187 fR = sqrt(1.0+1.5*1.5*pR*pR)/sqrt(1.0+1.5*1.5*pAB*pAB);
188 fD = sqrt(1.0+5.0*5.0*pD*pD)/sqrt(1.0+5.0*5.0*pDAB*pDAB);
189 power = 3;
190 break;
191 case 2:
192 fR = sqrt( (9+3*pow((1.5*pR),2)+pow((1.5*pR),4))/(9+3*pow((1.5*pAB),2) +pow((1.5*pAB) ,4)) );
193 fD = sqrt( (9+3*pow((5.0*pD),2)+pow((5.0*pD),4))/(9+3*pow((5.0*pDAB),2)+pow((5.0*pDAB),4)) );
194 power = 5;
195 break;
196 default:
197 cout << "Incorrect spin in D0ToKLpipi2018::EvtResonance2.cc\n" <<endl;
198 }
199
200 double gammaAB= gammaR*pow(pAB/pR,power)*(mR/mAB)*fR*fR;
201 switch (spin) {
202 case 0:
203 ampl=mag*complex<double>(cos(theta*pi180inv),sin(theta*pi180inv))*fR*fD/(mR*mR-mAB*mAB-complex<double>(0.0,mR*gammaAB));
204 break;
205 case 1:
206 ampl=mag*complex<double>(cos(theta*pi180inv),sin(theta*pi180inv))*
207 (fR*fD*(mAC*mAC-mBC*mBC+((mD*mD-mC*mC)*(mB*mB-mA*mA)/(mAB*mAB)))/(mR*mR-mAB*mAB-complex<double>(0.0,mR*gammaAB)));
208 break;
209 case 2:
210 ampl=mag*complex<double>(cos(theta*pi180inv),sin(theta*pi180inv))*
211 (fR*fD/(mR*mR-mAB*mAB-complex<double>(0.0,mR*gammaAB)))*
212 (pow((mBC*mBC-mAC*mAC+(mD*mD-mC*mC)*(mA*mA-mB*mB)/(mAB*mAB)),2)-
213 (1.0/3.0)*(mAB*mAB-2*mD*mD-2*mC*mC+pow((mD*mD- mC*mC)/mAB, 2))*
214 (mAB*mAB-2*mA*mA-2*mB*mB+pow((mA*mA-mB*mB)/mAB,2)));
215 break;
216 default:
217 cout << "Incorrect spin in D0ToKSpipi::Resonance2.cc\n" <<endl;
218 }
219
220 return ampl;
221}
222
223complex<double> D0ToKLpipi2018::K_matrix(vector<double> p_pip, vector<double> p_pim) {
224
225 //double pi180inv = 1.0/EvtConst::radToDegrees;
226 bool reject=false;
227
228 const double mD0 = 1.86483;
229 const double mKl = 0.49761;
230 const double mPi = 0.13957;
231
232 HepLorentzVector _p_pip(p_pip[0],p_pip[1],p_pip[2],p_pip[3]);
233 HepLorentzVector _p_pim(p_pim[0],p_pim[1],p_pim[2],p_pim[3]);
234
235 double mAB = (_p_pip + _p_pim).m() ;
236
237 double s = mAB*mAB;
238
239 // Define the complex coupling constants
240 //Double_t g[5][5]; // g[Physical pole]Decay channel]
241
242 // pi+pi- channel
243 //g[0][0]=0.22889;
244 //g[1][0]=0.94128;
245 //g[2][0]=0.36856;
246 //g[3][0]=0.33650;
247 //g[4][0]=0.18171;
248
249 //// K+K- channel
250 //g[0][1]=-0.55377;
251 //g[1][1]=0.55095;
252 //g[2][1]=0.23888;
253 //g[3][1]=0.40907;
254 //g[4][1]=-0.17558;
255
256 //// 4pi channel
257 //g[0][2]=0;
258 //g[1][2]=0;
259 //g[2][2]=0.55639;
260 //g[3][2]=0.85679;
261 //g[4][2]=-0.79658;
262
263 //// eta eta channel
264 //g[0][3]=-0.39899;
265 //g[1][3]=0.39065;
266 //g[2][3]=0.18340;
267 //g[3][3]=0.19906;
268 //g[4][3]=-0.00355;
269
270 ////eta eta' channel
271 //g[0][4]=-0.34639;
272 //g[1][4]=0.31503;
273 //g[2][4]=0.18681;
274 //g[3][4]=-0.00984;
275 //g[4][4]=0.22358;
276
277 // Define masses of the physical poles (in GeV)
278 //Double_t ma[5];
279
280 //ma[0]=0.651;
281 //ma[1]=1.20360;
282 //ma[2]=1.55817;
283 //ma[3]=1.21000;
284 //ma[4]=1.82206;
285
286 // Define variables
287 complex<double> n11,n12,n13,n14,n15,n21,n22,n23,n24,n25,n31,n32,n33,n34,n35,n41,n42,n43,n44,n45,n51,n52,n53,n54,n55;
288 double rho1sq,rho2sq,rho4sq,rho5sq;
289 complex<double> rho1,rho2,rho3,rho4,rho5;
290 complex<double> rho[5];
291 complex<double> pole,SVT,Adler;
292 complex<double> det;
293 complex<double> i[5][5];
294 double f[5][5];
295
296 // pi+, K+, eta, and eta' PDG masses
297 double mpi=0.13957;
298 double mK=0.493677;
299 double meta=0.54775;
300 double metap=0.95778;
301
302 // Init matrices and vectors with zeros
303 complex<double> K[5][5];
304 for(Int_t k=0;k<5;k++) {
305 for(Int_t l=0;l<5;l++) {
306 i[k][l]=complex<double>(0.,0.);
307 K[k][l]=complex<double>(0.,0.);
308 f[k][l]=0.;
309 }
310 rho[k]=0.;
311 }
312
313 // Fill scattering data values
314 Double_t s_scatt=-3.92637;
315 Double_t sa=1.0;
316 Double_t sa_0=-0.15;
317
318 // f_scattering
319 f[0][0]=0.23399;
320 f[0][1]=0.15044;
321 f[0][2]=-0.20545;
322 f[0][3]=0.32825;
323 f[0][4]=0.35412;
324
325 f[1][0]=f[0][1];
326 f[2][0]=f[0][2];
327 f[3][0]=f[0][3];
328 f[4][0]=f[0][4];
329
330 // Compute phase space factors
331 rho1sq=(1.0-(pow((mpi+mpi),2)/s));
332 if(rho1sq >=0.) {
333 rho1=complex<double>(sqrt(rho1sq),0.);
334 }
335 else{
336 rho1=complex<double>(0.,sqrt(-rho1sq));
337 }
338 rho[0]=rho1;
339
340 rho2sq=(1.0-(pow((mK+mK),2)/s));
341 if(rho2sq >=0.) {
342 rho2=complex<double>(sqrt(rho2sq),0.);
343 }
344 else{
345 rho2=complex<double>(0.,sqrt(-rho2sq));
346 }
347
348 rho[1]=rho2;
349
350 rho3=complex<double>(0.,0.);
351
352 if(s<=1) {
353 Double_t real = 1.2274+0.00370909/(s*s) - (0.111203)/(s) - 6.39017*s +16.8358*s*s - 21.8845*s*s*s + 11.3153*s*s*s*s;
354 Double_t cont32=sqrt(1.0-(16.0*mpi*mpi));
355 rho3=complex<double>(cont32*real,0.);
356 }
357 else{
358 rho3=complex<double>(sqrt(1.0-(16.0*mpi*mpi/s)),0.);
359 }
360 rho[2]=rho3;
361
362 rho4sq=(1.0-(pow((meta+meta),2)/s));
363 if(rho4sq>=0.) {
364 rho4=complex<double>(sqrt(rho4sq),0.);
365 }
366 else{
367 rho4=complex<double>(0.,sqrt(-rho4sq));
368 }
369 rho[3]=rho4;
370
371 rho5sq=(1.0-(pow((meta+metap),2)/s));
372 if(rho5sq >=0.) {
373 rho5=complex<double>(sqrt(rho5sq),0.);
374 }
375 else{
376 rho5=complex<double>(0.,sqrt(-rho5sq));
377 }
378 rho[4]=rho5;
379
380 // Sum over the poles
381 for(Int_t k=0;k<5;k++) {
382 for(Int_t l=0;l<5;l++) {
383 for (Int_t pole_index=0;pole_index<5;pole_index++) {
384 Double_t A=g[pole_index][k]*g[pole_index][l];
385 Double_t B=ma[pole_index]*ma[pole_index]-s;
386 K[k][l]=K[k][l]+complex<double>(A/B,0.);
387 }
388 }
389 }
390
391 for(Int_t k=0;k<5;k++) {
392 for(Int_t l=0;l<5;l++) {
393 Double_t C=f[k][l]*(1.0-s_scatt);
394 Double_t D=(s-s_scatt);
395 K[k][l]=K[k][l]+complex<double>(C/D,0.);
396 }
397 }
398
399 for(Int_t k=0;k<5;k++) {
400 for(Int_t l=0;l<5;l++) {
401 Double_t E=(s-(sa*mpi*mpi*0.5))*(1.0-sa_0);
402 Double_t F=(s-sa_0);
403 K[k][l]=K[k][l]*complex<double>(E/F,0.);
404 }
405 }
406
407 n11=complex<double>(1.,0.)-complex<double>(0.,1.)*K[0][0]*rho[0];
408 n12=complex<double>(0.,0.)-complex<double>(0.,1.)*K[0][1]*rho[1];
409 n13=complex<double>(0.,0.)-complex<double>(0.,1.)*K[0][2]*rho[2];
410 n14=complex<double>(0.,0.)-complex<double>(0.,1.)*K[0][3]*rho[3];
411 n15=complex<double>(0.,0.)-complex<double>(0.,1.)*K[0][4]*rho[4];
412
413 n21=complex<double>(0.,0.)-complex<double>(0.,1.)*K[1][0]*rho[0];
414 n22=complex<double>(1.,0.)-complex<double>(0.,1.)*K[1][1]*rho[1];
415 n23=complex<double>(0.,0.)-complex<double>(0.,1.)*K[1][2]*rho[2];
416 n24=complex<double>(0.,0.)-complex<double>(0.,1.)*K[1][3]*rho[3];
417 n25=complex<double>(0.,0.)-complex<double>(0.,1.)*K[1][4]*rho[4];
418
419 n31=complex<double>(0.,0.)-complex<double>(0.,1.)*K[2][0]*rho[0];
420 n32=complex<double>(0.,0.)-complex<double>(0.,1.)*K[2][1]*rho[1];
421 n33=complex<double>(1.,0.)-complex<double>(0.,1.)*K[2][2]*rho[2];
422 n34=complex<double>(0.,0.)-complex<double>(0.,1.)*K[2][3]*rho[3];
423 n35=complex<double>(0.,0.)-complex<double>(0.,1.)*K[2][4]*rho[4];
424
425 n41=complex<double>(0.,0.)-complex<double>(0.,1.)*K[3][0]*rho[0];
426 n42=complex<double>(0.,0.)-complex<double>(0.,1.)*K[3][1]*rho[1];
427 n43=complex<double>(0.,0.)-complex<double>(0.,1.)*K[3][2]*rho[2];
428 n44=complex<double>(1.,0.)-complex<double>(0.,1.)*K[3][3]*rho[3];
429 n45=complex<double>(0.,0.)-complex<double>(0.,1.)*K[3][4]*rho[4];
430
431 n51=complex<double>(0.,0.)-complex<double>(0.,1.)*K[4][0]*rho[0];
432 n52=complex<double>(0.,0.)-complex<double>(0.,1.)*K[4][1]*rho[1];
433 n53=complex<double>(0.,0.)-complex<double>(0.,1.)*K[4][2]*rho[2];
434 n54=complex<double>(0.,0.)-complex<double>(0.,1.)*K[4][3]*rho[3];
435 n55=complex<double>(1.,0.)-complex<double>(0.,1.)*K[4][4]*rho[4];
436
437 // Compute the determinant
438 det = (n15*n24*n33*n42*n51 - n14*n25*n33*n42*n51 - n15*n23*n34*n42*n51 +
439 n13*n25*n34*n42*n51 + n14*n23*n35*n42*n51 - n13*n24*n35*n42*n51 -
440 n15*n24*n32*n43*n51 + n14*n25*n32*n43*n51 + n15*n22*n34*n43*n51 -
441 n12*n25*n34*n43*n51 - n14*n22*n35*n43*n51 + n12*n24*n35*n43*n51 +
442 n15*n23*n32*n44*n51 - n13*n25*n32*n44*n51 - n15*n22*n33*n44*n51 +
443 n12*n25*n33*n44*n51 + n13*n22*n35*n44*n51 - n12*n23*n35*n44*n51 -
444 n14*n23*n32*n45*n51 + n13*n24*n32*n45*n51 + n14*n22*n33*n45*n51 -
445 n12*n24*n33*n45*n51 - n13*n22*n34*n45*n51 + n12*n23*n34*n45*n51 -
446 n15*n24*n33*n41*n52 + n14*n25*n33*n41*n52 + n15*n23*n34*n41*n52 -
447 n13*n25*n34*n41*n52 - n14*n23*n35*n41*n52 + n13*n24*n35*n41*n52 +
448 n15*n24*n31*n43*n52 - n14*n25*n31*n43*n52 - n15*n21*n34*n43*n52 +
449 n11*n25*n34*n43*n52 + n14*n21*n35*n43*n52 - n11*n24*n35*n43*n52 -
450 n15*n23*n31*n44*n52 + n13*n25*n31*n44*n52 + n15*n21*n33*n44*n52 -
451 n11*n25*n33*n44*n52 - n13*n21*n35*n44*n52 + n11*n23*n35*n44*n52 +
452 n14*n23*n31*n45*n52 - n13*n24*n31*n45*n52 - n14*n21*n33*n45*n52 +
453 n11*n24*n33*n45*n52 + n13*n21*n34*n45*n52 - n11*n23*n34*n45*n52 +
454 n15*n24*n32*n41*n53 - n14*n25*n32*n41*n53 - n15*n22*n34*n41*n53 +
455 n12*n25*n34*n41*n53 + n14*n22*n35*n41*n53 - n12*n24*n35*n41*n53 -
456 n15*n24*n31*n42*n53 + n14*n25*n31*n42*n53 + n15*n21*n34*n42*n53 -
457 n11*n25*n34*n42*n53 - n14*n21*n35*n42*n53 + n11*n24*n35*n42*n53 +
458 n15*n22*n31*n44*n53 - n12*n25*n31*n44*n53 - n15*n21*n32*n44*n53 +
459 n11*n25*n32*n44*n53 + n12*n21*n35*n44*n53 - n11*n22*n35*n44*n53 -
460 n14*n22*n31*n45*n53 + n12*n24*n31*n45*n53 + n14*n21*n32*n45*n53 -
461 n11*n24*n32*n45*n53 - n12*n21*n34*n45*n53 + n11*n22*n34*n45*n53 -
462 n15*n23*n32*n41*n54 + n13*n25*n32*n41*n54 + n15*n22*n33*n41*n54 -
463 n12*n25*n33*n41*n54 - n13*n22*n35*n41*n54 + n12*n23*n35*n41*n54 +
464 n15*n23*n31*n42*n54 - n13*n25*n31*n42*n54 - n15*n21*n33*n42*n54 +
465 n11*n25*n33*n42*n54 + n13*n21*n35*n42*n54 - n11*n23*n35*n42*n54 -
466 n15*n22*n31*n43*n54 + n12*n25*n31*n43*n54 + n15*n21*n32*n43*n54 -
467 n11*n25*n32*n43*n54 - n12*n21*n35*n43*n54 + n11*n22*n35*n43*n54 +
468 n13*n22*n31*n45*n54 - n12*n23*n31*n45*n54 - n13*n21*n32*n45*n54 +
469 n11*n23*n32*n45*n54 + n12*n21*n33*n45*n54 - n11*n22*n33*n45*n54 +
470 n14*n23*n32*n41*n55 - n13*n24*n32*n41*n55 - n14*n22*n33*n41*n55 +
471 n12*n24*n33*n41*n55 + n13*n22*n34*n41*n55 - n12*n23*n34*n41*n55 -
472 n14*n23*n31*n42*n55 + n13*n24*n31*n42*n55 + n14*n21*n33*n42*n55 -
473 n11*n24*n33*n42*n55 - n13*n21*n34*n42*n55 + n11*n23*n34*n42*n55 +
474 n14*n22*n31*n43*n55 - n12*n24*n31*n43*n55 - n14*n21*n32*n43*n55 +
475 n11*n24*n32*n43*n55 + n12*n21*n34*n43*n55 - n11*n22*n34*n43*n55 -
476 n13*n22*n31*n44*n55 + n12*n23*n31*n44*n55 + n13*n21*n32*n44*n55 -
477 n11*n23*n32*n44*n55 - n12*n21*n33*n44*n55 + n11*n22*n33*n44*n55);
478
479 if(det == complex<double>(0., 0.)) reject=true;
480
481 // The 1st row of the inverse matrix {(I-iKp)^-1}_0j
482 i[0][0] = (n25*n34*n43*n52 -
483 n24*n35*n43*n52 - n25*n33*n44*n52 + n23*n35*n44*n52 +
484 n24*n33*n45*n52 - n23*n34*n45*n52 - n25*n34*n42*n53 +
485 n24*n35*n42*n53 + n25*n32*n44*n53 - n22*n35*n44*n53 -
486 n24*n32*n45*n53 + n22*n34*n45*n53 + n25*n33*n42*n54 -
487 n23*n35*n42*n54 - n25*n32*n43*n54 + n22*n35*n43*n54 +
488 n23*n32*n45*n54 - n22*n33*n45*n54 - n24*n33*n42*n55 +
489 n23*n34*n42*n55 + n24*n32*n43*n55 - n22*n34*n43*n55 -
490 n23*n32*n44*n55 + n22*n33*n44*n55)/det;
491
492 i[0][1] = (-n15*n34*n43*n52 +
493 n14*n35*n43*n52 + n15*n33*n44*n52 - n13*n35*n44*n52 -
494 n14*n33*n45*n52 + n13*n34*n45*n52 + n15*n34*n42*n53 -
495 n14*n35*n42*n53 - n15*n32*n44*n53 + n12*n35*n44*n53 +
496 n14*n32*n45*n53 - n12*n34*n45*n53 - n15*n33*n42*n54 +
497 n13*n35*n42*n54 + n15*n32*n43*n54 - n12*n35*n43*n54 -
498 n13*n32*n45*n54 + n12*n33*n45*n54 + n14*n33*n42*n55 -
499 n13*n34*n42*n55 - n14*n32*n43*n55 + n12*n34*n43*n55 +
500 n13*n32*n44*n55 - n12*n33*n44*n55)/det;
501
502 i[0][2] = (n15*n24*n43*n52 -
503 n14*n25*n43*n52 - n15*n23*n44*n52 + n13*n25*n44*n52 +
504 n14*n23*n45*n52 - n13*n24*n45*n52 - n15*n24*n42*n53 +
505 n14*n25*n42*n53 + n15*n22*n44*n53 - n12*n25*n44*n53 -
506 n14*n22*n45*n53 + n12*n24*n45*n53 + n15*n23*n42*n54 -
507 n13*n25*n42*n54 - n15*n22*n43*n54 + n12*n25*n43*n54 +
508 n13*n22*n45*n54 - n12*n23*n45*n54 - n14*n23*n42*n55 +
509 n13*n24*n42*n55 + n14*n22*n43*n55 - n12*n24*n43*n55 -
510 n13*n22*n44*n55 + n12*n23*n44*n55)/det;
511
512 i[0][3] = (-n15*n24*n33*n52 +
513 n14*n25*n33*n52 + n15*n23*n34*n52 - n13*n25*n34*n52 -
514 n14*n23*n35*n52 + n13*n24*n35*n52 + n15*n24*n32*n53 -
515 n14*n25*n32*n53 - n15*n22*n34*n53 + n12*n25*n34*n53 +
516 n14*n22*n35*n53 - n12*n24*n35*n53 - n15*n23*n32*n54 +
517 n13*n25*n32*n54 + n15*n22*n33*n54 - n12*n25*n33*n54 -
518 n13*n22*n35*n54 + n12*n23*n35*n54 + n14*n23*n32*n55 -
519 n13*n24*n32*n55 - n14*n22*n33*n55 + n12*n24*n33*n55 +
520 n13*n22*n34*n55 - n12*n23*n34*n55)/det;
521
522 i[0][4] = (n15*n24*n33*n42 -
523 n14*n25*n33*n42 - n15*n23*n34*n42 + n13*n25*n34*n42 +
524 n14*n23*n35*n42 - n13*n24*n35*n42 - n15*n24*n32*n43 +
525 n14*n25*n32*n43 + n15*n22*n34*n43 - n12*n25*n34*n43 -
526 n14*n22*n35*n43 + n12*n24*n35*n43 + n15*n23*n32*n44 -
527 n13*n25*n32*n44 - n15*n22*n33*n44 + n12*n25*n33*n44 +
528 n13*n22*n35*n44 - n12*n23*n35*n44 - n14*n23*n32*n45 +
529 n13*n24*n32*n45 + n14*n22*n33*n45 - n12*n24*n33*n45 -
530 n13*n22*n34*n45 + n12*n23*n34*n45)/det;
531
532
533 //--------------------------------------------------------------------------------------------------------------------------------
534 double s0_prod = -0.07;
535
536 double u1j_re_limit[5][2], u1j_im_limit[5][2] ;
537 u1j_re_limit[0][0] = 0. ; u1j_re_limit[0][1] = 1. ;
538 u1j_re_limit[1][0] = -0.29 ; u1j_re_limit[1][1] = 0.12 ;
539 u1j_re_limit[2][0] = -0.17 ; u1j_re_limit[2][1] = 0.065 ;
540 u1j_re_limit[3][0] = -0.66 ; u1j_re_limit[3][1] = 0.1 ;
541 u1j_re_limit[4][0] = -1.36 ; u1j_re_limit[4][1] = 0.18 ;
542
543 u1j_im_limit[0][0] = -0.58 ; u1j_im_limit[0][1] = 0.58 ;
544 u1j_im_limit[1][0] = 0.00 ; u1j_im_limit[1][1] = 0.28 ;
545 u1j_im_limit[2][0] = -0.135 ; u1j_im_limit[2][1] = 0.10 ;
546 u1j_im_limit[3][0] = -0.13 ; u1j_im_limit[3][1] = 0.40 ;
547 u1j_im_limit[4][0] = -0.36 ; u1j_im_limit[4][1] = 0.80 ;
548
549 //for(int kk=0 ; kk<5 ; kk++)
550 //{
551 // cout<<"beta["<<kk<<"]: "<<abs(beta[kk])<<", \t"<<arg(beta[kk])*EvtConst::radToDegrees<<endl;
552 // cout<<"fprod["<<kk<<"]: "<<abs(fprod[kk])<<", \t"<<arg(fprod[kk])*EvtConst::radToDegrees<<endl;
553 //}
554
555 complex<double> value0(0., 0.) ;
556 complex<double> value1(0., 0.) ;
557
558 for(int l=0;l<5;l++)
559 {
560 double u1j_re = real(i[0][l]) ;
561 double u1j_im = imag(i[0][l]) ;
562 if(u1j_re==0. || u1j_im==0.) reject=true;
563 if(u1j_re < u1j_re_limit[l][0] || u1j_re > u1j_re_limit[l][1] || u1j_im < u1j_im_limit[l][0] || u1j_im > u1j_im_limit[l][1]) reject=true;
564
565 for(int pole_index=0;pole_index<5;pole_index++)
566 {
567 complex<double> A = beta[pole_index]*g[pole_index][l];
568 value0 += (i[0][l]*A)/(ma[pole_index]*ma[pole_index]-s) ;
569 //cout<<"value0["<<l<<"]["<<pole_index<<"] = "<<value0<<endl;
570 }
571 }
572
573 value1 += i[0][0]*fprod[0];
574 value1 += i[0][1]*fprod[1];
575 value1 += i[0][2]*fprod[2];
576 value1 += i[0][3]*fprod[3];
577 value1 += i[0][4]*fprod[4];
578 value1 *= (1.-s0_prod)/(s-s0_prod) ;
579 //cout<<"value1 = "<<value1<<endl;
580
581 if(reject==true) return complex<double>(9999., 9999.) ;
582 else return (value0+value1) ;
583 //return (value0+value1) ;
584
585}
586
587complex<double> D0ToKLpipi2018::amplitude_LASS(vector<double> p_k0l, vector<double> p_pip, vector<double> p_pim, string reso, double A_r, double Phi_r) {
588
589 double mR = 1.425 ;
590 double gammaR = 0.27 ;
591 double mab2=0.0;
592 HepLorentzVector _p_k0l(p_k0l[0],p_k0l[1],p_k0l[2],p_k0l[3]);
593 HepLorentzVector _p_pip(p_pip[0],p_pip[1],p_pip[2],p_pip[3]);
594 HepLorentzVector _p_pim(p_pim[0],p_pim[1],p_pim[2],p_pim[3]);
595 if (reso == "k0lpim") mab2 = pow((_p_k0l + _p_pim).m(),2);
596 else if(reso == "k0lpip") mab2 = pow((_p_k0l + _p_pip).m(),2);
597
598 double s = mab2;
599
600 const double mD0 = 1.86483;
601 const double mKl = 0.49761;
602 const double mPi = 0.13957;
603
604 double _a = 0.113 ;
605 double _r = -33.8 ;
606 double _R = 1.0 ;
607 double _F = 0.96 ;
608 double _phiR = -1.9146 ;
609 double _phiF = 0.0017 ;
610
611 double fR=1.0; // K*0(1430) has spin zero
612 int power=1; // Power is 1 for spin zero
613
614 double mAB = sqrt(mab2) ; // (_p4_d1+_p4_d2).mass();
615
616 double mA=mKl; // _p4_d1.mass();
617 double mB=mPi; // _p4_d2.mass();
618 double mC=mPi;
619 double mD = mD0;
620
621 double pAB=sqrt( (((mAB*mAB-mA*mA-mB*mB)*(mAB*mAB-mA*mA-mB*mB)/4.0) - mA*mA*mB*mB)/(mAB*mAB));
622 double q=pAB;
623
624 double pR=sqrt( (((mR*mR-mA*mA-mB*mB)*(mR*mR-mA*mA-mB*mB)/4.0) - mA*mA*mB*mB)/(mR*mR));
625 double q0=pR;
626
627 // Running width.
628 double g = gammaR*pow(q/q0,power)*(mR/mAB)*fR*fR;
629
630 complex<double> propagator_relativistic_BreitWigner = 1./(mR*mR - mAB*mAB - complex<double>(0.,mR*g));
631
632 // Non-resonant phase shift
633 double cot_deltaF = 1.0/(_a*q) + 0.5*_r*q;
634 double qcot_deltaF = 1.0/_a + 0.5*_r*q*q;
635
636 // Compute resonant part
637 complex<double> expi2deltaF = complex<double>(qcot_deltaF, q)/ complex<double>(qcot_deltaF, -q);
638
639 complex<double> resonant_term_T = _R * complex<double>(cos(_phiR + 2 * _phiF), sin(_phiR + 2 * _phiF)) * propagator_relativistic_BreitWigner * mR * gammaR * mR / q0 * expi2deltaF;
640
641 // Compute non-resonant part
642 complex<double> non_resonant_term_F = _F * complex<double>(cos(_phiF), sin(_phiF)) * (cos(_phiF) + cot_deltaF * sin(_phiF)) * sqrt(s) / complex<double>(qcot_deltaF, -q);
643
644 // Add non-resonant and resonant terms
645 complex<double> LASS_contribution = non_resonant_term_F + resonant_term_T;
646
647 return complex<double>(A_r*cos(Phi_r), A_r*sin(Phi_r)) * LASS_contribution;
648
649}
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
double imag(const EvtComplex &c)
double meta
double mPi
const double mpi
Definition Gam4pikp.cxx:47
XmlRpcServer s
****INTEGER imax DOUBLE PRECISION m_pi *DOUBLE PRECISION m_amfin DOUBLE PRECISION m_Chfin DOUBLE PRECISION m_Xenph DOUBLE PRECISION m_sinw2 DOUBLE PRECISION m_GFermi DOUBLE PRECISION m_MfinMin DOUBLE PRECISION m_ta2 INTEGER m_out INTEGER m_KeyFSR INTEGER m_KeyQCD *COMMON c_Semalib $ !copy of input $ !CMS energy $ !beam mass $ !final mass $ !beam charge $ !final charge $ !smallest final mass $ !Z mass $ !Z width $ !EW mixing angle $ !Gmu Fermi $ alphaQED at q
Definition KKsem.h:33
const double mD0
Definition MyConst.h:5
***************************************************************************************Pseudo Class RRes *****************************************************************************************Parameters and physical constants **Maarten sept ************************************************************************DOUBLE PRECISION xsmu **************************************************************************PARTICLE DATA all others are from PDG *Only resonances with known widths into electron pairs are sept ************************************************************************C Declarations C
Definition RRes.h:29
complex< double > Amp_PFT(vector< double > k0l, vector< double > pip, vector< double > pim)
virtual ~D0ToKLpipi2018()