BOSS 7.1.2
BESIII Offline Software System
Loading...
Searching...
No Matches
EvtD0ToKSpi0pi0pi0.cc
Go to the documentation of this file.
1//--------------------------------------------------------------------------
2// Environment:
3// This software is part of models developed at BES collaboration
4// based on the EvtGen framework. If you use all or part
5// of it, please give an appropriate acknowledgement.
6//
7// Copyright Information: See EvtGen/BesCopyright
8// Copyright (A) 2006 Ping Rong-Gang @IHEP
9//
10// Module: EvtD0ToKSpi0pi0pi0.cc
11// the necessary file: EvtD0ToKSpi0pi0pi0.hh
12//
13// Description: D0 -> KS pi0 pi0 pi0
14//
15// Modification history:
16//
17// Shaoshi Rong Nov.27, 2023 Module created
18// Jun.02 01:01:42 2024 Module updated
19//------------------------------------------------------------------------
23#include "EvtGenBase/EvtPDL.hh"
28#include <stdlib.h>
29#include <iostream>
30#include <cmath>
31using namespace std;
32
34
35void EvtD0ToKSpi0pi0pi0::getName(std::string& model_name){
36 model_name="D0ToKSpi0pi0pi0";
37}
38
42
44 checkNArg(0);
45 checkNDaug(4);
47 //cout << "Initializing EvtD0ToKSpi0pi0pi0" << endl;
48
49 mD = 1.86484; mPi = 0.13957; mKa = 0.493677;
50 math_pi = 3.1415926;
51 mKstr0 = 0.89555; mrhop = 0.77511;
52 GKstr0 = 0.0473; Grhop = 0.1491;
53
54 mass_Pion = 0.13957;
55 mass_Eta = 0.547862;
56 rD2 = 25.0; // 5*5
57 rRes2 = 9.0; // 3*3
58
59 ma1_1260 = 1.195; mK1_1270 = 1.2898;
60 Ga1_1260 = 0.422; GK1_1270 = 0.1161;
61 mpi_1300 = 1.371; mK1_1400 = 1.403;
62 Gpi_1300 = 0.314; GK1_1400 = 0.174;
63 mf0_500 = 0.5; Gf0_500 = 0.335;
64 mK1460 = 1.4824; GK1460 = 0.335;
65//--------fixed---------------//
66 phi01 = 0.;
67 phi04 = 0.;
68 phi07 = 0.;
69 phi08 = 0.;
70 phi10 = 0.;
71 phi126 = 0.;
72
73 rho01 = 1.0;
74 rho04 = 1.0;
75 rho07 = 1.0;
76 rho08 = 1.0;
77 rho10 = 1.0;
78 rho126 = 1.0;
79//---------------------------//
80
81
82 K1460b1 = 1.7104e+00;
83 K1460b2 = 7.4066e+00;
84 K1460b6 = -1.4986e+00;
85 K1460b7 = -8.0174e-01;
86 K1460f2 = 1.7438e+01;
87 K1460f7 = -4.2315e+00;
88 Kstb2 = 1.2922e+00;
89 Kstb7 = 4.9340e+00;
90 Kstf1 = 2.7165e-01;
91 Kstf6 = 9.3143e-01;
92 Phspb2 = 2.1656e+00;
93 Phspb7 = 4.6264e+00;
94 Phspf1 = 1.2052e-01;
95 Phspf6 = 1.2506e+00;
96 a1260b1 = 2.3244e+00;
97 a1260b2 = 1.4414e+01;
98 a1260b6 = 4.3493e+00;
99 a1260b7 = 3.1104e+00;
100 a1260f1 = 3.3290e+00;
101 a1260f6 = 4.7215e+00;
102 a321 = 1.8517e+01;
103 a322 = 6.3000e+00;
104 ake1 = 2.0000e+02;
105 ake2 = 3.1394e+00;
106 phi02 = 9.5172e+00;
107 phi03 = 7.7804e+00;
108 phi06 = 5.6253e+00;
109 rho02 = 2.0961e-01;
110 rho03 = 7.5251e-01;
111 rho06 = 1.9247e+00;
112
113
114
115 modetype[0]=0;
116 modetype[1]=1;
117 modetype[2]=1;
118 modetype[3]=2;
119 modetype[4]=2;
120 modetype[5]=1;
121 modetype[6]=33;
122 modetype[7]=11;
123
124 int GG[4][4] = { {1,0,0,0}, {0,-1,0,0}, {0,0,-1,0}, {0,0,0,-1} };
125 int EE[4][4][4][4] =
126 { { {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} },
127 {{0,0,0,0}, {0,0,0,0}, {0,0,0,1}, {0,0,-1,0}},
128 {{0,0,0,0}, {0,0,0,-1}, {0,0,0,0}, {0,1,0,0} },
129 {{0,0,0,0}, {0,0,1,0}, {0,-1,0,0}, {0,0,0,0} } },
130 { {{0,0,0,0}, {0,0,0,0}, {0,0,0,-1}, {0,0,1,0} },
131 {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} },
132 {{0,0,0,1}, {0,0,0,0}, {0,0,0,0}, {-1,0,0,0}},
133 {{0,0,-1,0}, {0,0,0,0}, {1,0,0,0}, {0,0,0,0} } },
134 { {{0,0,0,0}, {0,0,0,1}, {0,0,0,0}, {0,-1,0,0}},
135 {{0,0,0,-1}, {0,0,0,0}, {0,0,0,0}, {1,0,0,0} },
136 {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} },
137 {{0,1,0,0}, {-1,0,0,0}, {0,0,0,0}, {0,0,0,0} } },
138 { {{0,0,0,0}, {0,0,-1,0}, {0,1,0,0}, {0,0,0,0} },
139 {{0,0,1,0}, {0,0,0,0}, {-1,0,0,0}, {0,0,0,0} },
140 {{0,-1,0,0}, {1,0,0,0}, {0,0,0,0}, {0,0,0,0} },
141 {{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0} } } };
142 for (int i=0; i<4; i++) {
143 for (int j=0; j<4; j++) {
144 G[i][j] = GG[i][j];
145 for (int k=0; k<4; k++) {
146 for (int l=0; l<4; l++) {
147 E[i][j][k][l] = EE[i][j][k][l];
148 }
149 }
150 }
151 }
152}
153
155 setProbMax(77195.0);
156}
157
159 //-----------for max value------------------
160/* double maxprob = 0.0;
161 for(int ir=0;ir<=60000000;ir++){
162 p->initializePhaseSpace(getNDaug(),getDaugs());
163 EvtVector4R ks = p->getDaug(0)->getP4();
164 EvtVector4R kp = p->getDaug(1)->getP4();
165 EvtVector4R pim = p->getDaug(2)->getP4();
166 EvtVector4R pi0 = p->getDaug(3)->getP4();
167 mother_c=EvtPDL::getStdHep(p->getId());
168 int cc;
169 if(mother_c==421){
170 cc=1;
171 } else if(mother_c==-421){
172 cc=-1;
173 }
174 double value;
175 double KS[4],Pi01[4],Pi02[4],Pi03[4];
176 KS[0] = ks.get(0); Pi01[0] = kp.get(0); Pi02[0] = pim.get(0); Pi03[0] = pi0.get(0);
177 KS[1] = cc*ks.get(1); Pi01[1] = cc*kp.get(1); Pi02[1] = cc*pim.get(1); Pi03[1] = cc*pi0.get(1);
178 KS[2] = cc*ks.get(2); Pi01[2] = cc*kp.get(2); Pi02[2] = cc*pim.get(2); Pi03[2] = cc*pi0.get(2);
179 KS[3] = cc*ks.get(3); Pi01[3] = cc*kp.get(3); Pi02[3] = cc*pim.get(3); Pi03[3] = cc*pi0.get(3);
180 calPDF(KS, Pi01, Pi02, Pi03, value);
181 if(value>maxprob) {
182 maxprob=value;
183 std::cout << "Max PDF = " << ir << " prob= " << value << std::endl;
184 }
185 }
186 std::cout << "Max!!!!!!!!!!! " << maxprob<< std::endl;
187 return;*/
188 //-----------------------------------------------
190 EvtVector4R ks = p->getDaug(0)->getP4();
191 EvtVector4R pi01 = p->getDaug(1)->getP4();
192 EvtVector4R pi02 = p->getDaug(2)->getP4();
193 EvtVector4R pi03 = p->getDaug(3)->getP4();
194
195 mother_c=EvtPDL::getStdHep(p->getId());
196 int cc;
197 if(mother_c==421){
198 cc=1;
199 } else if(mother_c==-421){
200 cc=-1;
201 }
202
203 double KS[4],Pi01[4],Pi02[4],Pi03[4];
204 KS[0] = ks.get(0); Pi01[0] = pi01.get(0); Pi02[0] = pi02.get(0); Pi03[0] = pi03.get(0);
205 KS[1] = cc*ks.get(1); Pi01[1] = cc*pi01.get(1); Pi02[1] = cc*pi02.get(1); Pi03[1] = cc*pi03.get(1);
206 KS[2] = cc*ks.get(2); Pi01[2] = cc*pi01.get(2); Pi02[2] = cc*pi02.get(2); Pi03[2] = cc*pi03.get(2);
207 KS[3] = cc*ks.get(3); Pi01[3] = cc*pi01.get(3); Pi02[3] = cc*pi02.get(3); Pi03[3] = cc*pi03.get(3);
208
209 double value;
210 calPDF(KS, Pi01, Pi02, Pi03, value);
211 setProb(value);
212 return;
213
214}
215
216double EvtD0ToKSpi0pi0pi0::calPDF(double Ks[], double Pi01[], double Pi02[], double Pi03[], double & Result) {
217 double cof[2], amp_tmp[2], amp_PDF[2], PDF[2];
218 double temp_PDF = 0;
219 double propagtr1b[2];
220 double propagtr2b[2];
221 double propagtr3b[2];
222 double propagtr4b[2];
223 double propagtr5b[2];
224 double propagtr6b[2];
225
226
227
228 double tmp1 = 0, tmp2 = 0, tmp3 = 0, tmp4 = 0, tmp5 = 0, tmp6 = 0;
229
230
231
232 double rD2 = 25.0;
233 double rRes2 = 9.0; // // //PHSP
234 double mass1[8] ={mKstr0, mK1_1270, mK1_1400, mK1460, mK1460, mK1_1270, ma1_1260, mK1_1270};
235 double mass2[8] ={mKstr0, mKstr0, mKstr0, mKstr0, mKstr0, mKstr0, mf0_500, mKstr0};
236 double width1[8]={GKstr0, GK1_1270, GK1_1400, GK1460, GK1460, GK1_1270, Ga1_1260, GK1_1270};
237 double width2[8]={GKstr0, GKstr0, GKstr0, GKstr0, GKstr0, GKstr0, Gf0_500, GKstr0};
238 double g0[8] ={ 1, 1, 1, 1, 0, 0, 1, 2};
239 double g1[8] ={ 0, 1, 1, 1, 0, 0, 1, 1};
240 double g2[8] ={ 1, 0, 0, 0, 1, 1, 1, 1};
241
242 double rho[8] = {rho01, rho02, rho03, rho04, rho10, rho06, rho07, rho126};
243 double phi[8] = {phi01, phi02, phi03, phi04, phi10, phi06, phi07, phi126};
244
245 double sp0[8] = {-0.07, -0.07, -0.07,-0.07,-0.07,-0.07,-0.07,-0.07};
246 double f1[8] = {Kstf1, 0., 0., 0., 0., 0., a1260f1, Phspf1};
247 double f2[8] = {0., 0., 0., 0., K1460f2, 0., 0., 0.};
248 double f3[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
249 double f4[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
250 double f5[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
251 double f6[8] = {Kstf6, 0., 0., 0., 0., 0., a1260f6, Phspf6};
252 double f7[8] = {0., 0., 0., 0., K1460f7, 0., 0., 0.};
253 double f8[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
254 double f9[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
255 double f10[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
256
257 double b1[8] = {0., 0., 0., 0., K1460b1, 0., a1260b1, 0.};
258 double b2[8] = {Kstb2, 0., 0., 0., K1460b2, 0., a1260b2, Phspb2};
259 double b3[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
260 double b4[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
261 double b5[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
262 double b6[8] = {0., 0., 0., 0., K1460b6, 0., a1260b6, 0.};
263 double b7[8] = {Kstb7, 0., 0., 0., K1460b7, 0., a1260b7, Phspb7};
264 double b8[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
265 double b9[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
266 double b10[8] = {0., 0., 0., 0., 0., 0., 0., 0.};
267
268 double akeMag[8] = {0.,0.,0.,0.,0.,0.,0., ake1};
269 double akePhs[8] = {0.,0.,0.,0.,0.,0.,0., ake2};
270 double a32Mag[8] = {0.,0.,0.,0.,0.,0.,0., a321};
271 double a32Phs[8] = {0.,0.,0.,0.,0.,0.,0., a322};
272
273 PDF[0]=0; PDF[1]=0;
274
275
276 for(int i=0; i<8; i++) {
277 //flag[0] = g0[i]; flag[1] = g1[i];flag[2] = g2[i];
278 //mass_R[0] = mass1[i]; mass_R[1] = mass2[i];
279 //width_R[0] = width1[i]; width_R[1] = width2[i];
280 //mass1sq = mass1[i]*mass1[i];//avoid parameters input reversed
281 //mass2sq = mass2[i]*mass2[i];
282 //temp_PDF = 0;
283
284 amp_tmp[0] = 0;
285 amp_tmp[1] = 0;
286
287 amp_PDF[0] = 0.0;
288 amp_PDF[1] = 0.0;
289
290 cof[0] = rho[i]*cos(phi[i]);
291 cof[1] = rho[i]*sin(phi[i]);
292
293 //std::cout << "rho" <<i<<" = " <<rho[i] << std::endl;
294 //std::cout << "Ks_e = " << Ks[0] << std::endl;
295 if(modetype[i]==0){
296 //double Kmtx[21] = {sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] };
297 DtoVP_S(Ks[0], Ks[1], Ks[2], Ks[3],
298 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
299 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
300 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
301 mass1[i], width1[i], 1, 1, g0[i], propagtr1b, tmp1, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
302 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
303
304
305 DtoVP_S(Ks[0], Ks[1], Ks[2], Ks[3],
306 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
307 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
308 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
309 mass1[i], width1[i], 1, 1, g0[i], propagtr2b, tmp2, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
310 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
311
312
313
314
315 DtoVP_S(Ks[0], Ks[1], Ks[2], Ks[3],
316 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
317 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
318 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
319 mass1[i], width1[i], 1, 1, g0[i], propagtr3b, tmp3, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
320 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
321
322
323 }
324
325
326
327 if(modetype[i]==1){
328 //g2 is angular of K1; g0 is angular of KsPi0. When g0 is 0, the process will be K1->kspiS pi0 and K1->Ks f0 for g1 == 0 and 1.
329 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
330 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
331 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
332 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
333 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr1b, tmp1,
334 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
335
336 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
337 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
338 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
339 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
340 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr2b, tmp2,
341 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
342
343 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
344 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
345 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
346 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
347 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr3b, tmp3,
348 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
349
350 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
351 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
352 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
353 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
354 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr4b, tmp4,
355 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
356
357 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
358 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
359 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
360 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
361 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr5b, tmp5,
362 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
363
364 DtoAP(Ks[0], Ks[1], Ks[2], Ks[3],
365 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
366 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
367 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
368 mass1[i], mass2[i], width1[i], width2[i], 1, g2[i], g0[i], g1[i], propagtr6b, tmp6,
369 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
370
371
372 }
373
374 //D -> K(1460) pi0, K -> K*0 pi0 (D->PP_1, P->VP_2)
375 if(modetype[i]==2){
376 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
377 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
378 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
379 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
380 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr1b, tmp1, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
381 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
382
383 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
384 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
385 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
386 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
387 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr2b, tmp2, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
388 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
389
390 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
391 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
392 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
393 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
394 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr3b, tmp3, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
395 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
396
397 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
398 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
399 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
400 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
401 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr4b, tmp4, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
402 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
403
404 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
405 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
406 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
407 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
408 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr5b, tmp5, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
409 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
410
411 DtoPP(Ks[0], Ks[1], Ks[2], Ks[3],
412 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
413 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
414 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
415 mass1[i], mass2[i], width1[i], width2[i], 0, g0[i], g1[i], propagtr6b, tmp6, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
416 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
417
418 }
419
420 if(modetype[i]==126){
421 amp_tmp[0] = 1.0;
422 amp_tmp[1] = 0.0;
423 }
424
425
426 // D -> a1(1260) Ks, a1 -> 3pi0, (D -> AP, A -> SP), three ways to describe pi0pi0
427 if(modetype[i]==33){
428 //double Kmtx[21] = {sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] };
429 DtoaP(Ks[0], Ks[1], Ks[2], Ks[3],
430 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
431 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
432 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
433 mass1[i], width1[i], g1[i], g2[i], g0[i], propagtr1b, tmp1, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
434 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] );
435
436 DtoaP(Ks[0], Ks[1], Ks[2], Ks[3],
437 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
438 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
439 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
440 mass1[i], width1[i], g1[i], g2[i], g0[i], propagtr2b, tmp2, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
441 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i]);
442
443 DtoaP(Ks[0], Ks[1], Ks[2], Ks[3],
444 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
445 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
446 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
447 mass1[i], width1[i], g1[i], g2[i], g0[i], propagtr3b, tmp3, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
448 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i]);
449
450 }
451
452
453
454 // (Ks pi0)s-wave
455 if(modetype[i] == 11){
456 //double Kmtx[21] = {sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i] };
457 //g0: 0 only Kpis, 1 PiPis, 2 K_matrix
458 DtoKPi(Ks[0], Ks[1], Ks[2], Ks[3],
459 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
460 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
461 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
462 g0[i], g1[i], propagtr1b, tmp1, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
463 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i],
464 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
465
466 DtoKPi(Ks[0], Ks[1], Ks[2], Ks[3],
467 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
468 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
469 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
470 g0[i], g1[i], propagtr2b, tmp2, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
471 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i],
472 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
473
474 DtoKPi(Ks[0], Ks[1], Ks[2], Ks[3],
475 Pi03[0], Pi03[1], Pi03[2], Pi03[3],
476 Pi01[0], Pi01[1], Pi01[2], Pi01[3],
477 Pi02[0], Pi02[1], Pi02[2], Pi02[3],
478 g0[i], g1[i], propagtr3b, tmp3, sp0[i],f1[i],f2[i],f3[i],f4[i],f5[i],f6[i],f7[i],f8[i],f9[i],f10[i],
479 b1[i],b2[i],b3[i],b4[i],b5[i],b6[i],b7[i],b8[i],b9[i],b10[i],
480 akeMag[i],a32Mag[i],akePhs[i],a32Phs[i]);
481
482 }
483
484
485
486
487 if(modetype[i] == 0 || modetype[i] == 11 || modetype[i] == 33){
488 amp_tmp[0] = tmp1*propagtr1b[0] + tmp2*propagtr2b[0] + tmp3*propagtr3b[0];
489 amp_tmp[1] = tmp1*propagtr1b[1] + tmp2*propagtr2b[1] + tmp3*propagtr3b[1];
490 }else if(modetype[i]==1 || modetype[i]==2 || modetype[i]==4){
491 amp_tmp[0] = tmp1*propagtr1b[0] + tmp2*propagtr2b[0] + tmp3*propagtr3b[0] + tmp4*propagtr4b[0] + tmp5*propagtr5b[0] + tmp6*propagtr6b[0];
492 amp_tmp[1] = tmp1*propagtr1b[1] + tmp2*propagtr2b[1] + tmp3*propagtr3b[1] + tmp4*propagtr4b[1] + tmp5*propagtr5b[1] + tmp6*propagtr6b[1];
493 }else if(modetype[i]==100){
494 amp_tmp[0] = tmp1*propagtr1b[0] + tmp2*propagtr2b[0] + tmp3*propagtr3b[0] + tmp4*propagtr4b[0];
495 amp_tmp[1] = tmp1*propagtr1b[1] + tmp2*propagtr2b[1] + tmp3*propagtr3b[1] + tmp4*propagtr4b[1];
496 }
497
498
499
500 Com_Multi(amp_tmp,cof,amp_PDF);
501 //printf("%dth process has modetype%d has pdf: %.10f + i (%.10f)\n", i, modetype[i], amp_PDF[0], amp_PDF[1]);
502 PDF[0] += amp_PDF[0];
503 PDF[1] += amp_PDF[1];
504 }
505 double value = PDF[0]*PDF[0] + PDF[1]*PDF[1];
506 Result = value;
507}
508
509void EvtD0ToKSpi0pi0pi0::Com_Multi(double a1[2], double a2[2], double res[2])
510{
511 res[0] = a1[0]*a2[0]-a1[1]*a2[1];
512 res[1] = a1[1]*a2[0]+a1[0]*a2[1];
513}
514void EvtD0ToKSpi0pi0pi0::Com_Divide(double a1[2], double a2[2], double res[2])
515{
516 double tmp = a2[0]*a2[0]+a2[1]*a2[1];
517 res[0] = (a1[0]*a2[0]+a1[1]*a2[1])/tmp;
518 res[1] = (a1[1]*a2[0]-a1[0]*a2[1])/tmp;
519}
520double EvtD0ToKSpi0pi0pi0::SCADot(double a1[4], double a2[4])
521{
522 double _cal = a1[0]*a2[0]-a1[1]*a2[1]-a1[2]*a2[2]-a1[3]*a2[3];
523 return _cal;
524}
525double EvtD0ToKSpi0pi0pi0::Barrier(double mass2, int l, double sa, double sb, double sc, double r2)
526{
527 double F;
528 double tmp = sa+sb-sc;
529 double q = fabs(0.25*tmp*tmp/sa-sb);
530 //if (q < 0) q = 1e-16;
531 double tmp2 = mass2+sb-sc;
532 double q0 = fabs(0.25*tmp2*tmp2/mass2-sb);
533 //if (q0 < 0) q0 = 1e-16;
534 double z = q*r2;
535 double z0 = q0*r2;
536 if (l==1) {
537 F = sqrt((1.0+z0)/(1.0+z));
538 }
539 else if (l==2) {
540 double z2 = z*z; double z02 = z0*z0;
541 F = sqrt((9.0+3.0*z0+z02)/(9.0+3.0*z+z2));
542 } else {
543 F = 1.0;
544 }
545 return F;
546}
547
548double EvtD0ToKSpi0pi0pi0::barrier(int l, double sa, double sb, double sc, double r2, double Smass)
549{
550 double F;
551 double tmp = sa+sb-sc;
552 double q = fabs(0.25*tmp*tmp/sa-sb);
553 //if (q < 0) q = 1e-16;
554 double z = q*r2;
555 double tmp2 = Smass+sb-sc;
556 double q0 = fabs(0.25*tmp2*tmp2/Smass - sb);
557 double z0 = q0 * r2;
558 if (l == 1) {
559 F = sqrt( (1.0+z0)/(1.0+z) );
560 }
561 else if (l == 2) {
562 double z02 = z0*z0; double z2 = z*z;
563 F = sqrt( (9.0+3.0*z0+z02)/(9.0+3.0*z+z2) );
564 } else {
565 F = 1.0;
566 }
567 return F;
568}
569
570
571void EvtD0ToKSpi0pi0pi0::calt1(double daug1[4], double daug2[4], double t1[4])
572{
573 double p, pq, tmp;
574 double pa[4], qa[4];
575 for(int i=0; i<4; i++) {
576 pa[i] = daug1[i] + daug2[i];
577 qa[i] = daug1[i] - daug2[i];
578 }
579 p = SCADot(pa,pa);
580 pq = SCADot(pa,qa);
581 tmp = pq/p;
582 for(int i=0; i<4; i++) {
583 t1[i] = qa[i] - tmp*pa[i];
584 }
585}
586void EvtD0ToKSpi0pi0pi0::calt2(double daug1[4], double daug2[4], double t2[4][4])
587{
588 double p, r;
589 double pa[4], t1[4];
590 calt1(daug1,daug2,t1);
591 r = SCADot(t1,t1)/3.0;
592 for(int i=0; i<4; i++) {
593 pa[i] = daug1[i] + daug2[i];
594 }
595 p = SCADot(pa,pa);
596 for(int i=0; i<4; i++) {
597 for(int j=0; j<4; j++) {
598 t2[i][j] = t1[i]*t1[j] - r*(G[i][j]-pa[i]*pa[j]/p);
599 }
600 }
601}
602void EvtD0ToKSpi0pi0pi0::propagator(double mass2, double mass, double width, double sx, double prop[2])
603{
604 double a[2], b[2];
605 a[0] = 1;
606 a[1] = 0;
607 b[0] = mass2-sx;
608 b[1] = -mass*width;
609 Com_Divide(a,b,prop);
610}
611double EvtD0ToKSpi0pi0pi0::wid(double mass2, double mass, double sa, double sb, double sc, double r2, int l)
612{
613 double widm = 0.;
614 double m = sqrt(sa);
615 double tmp = sb-sc;
616 double tmp1 = sa+tmp;
617 double q = fabs(0.25*tmp1*tmp1/sa-sb);
618 //if(q<0) q = 1e-16;
619 double tmp2 = mass2+tmp;
620 double q0 = fabs(0.25*tmp2*tmp2/mass2-sb);
621 //if(q0<0) q0 = 1e-16;
622 double z = q*r2;
623 double z0 = q0*r2;
624 double t = q/q0;
625 if(l == 0) {widm = sqrt(t)*mass/m;}
626 else if(l == 1) {widm = t*sqrt(t)*mass/m*(1+z0)/(1+z);}
627 else if(l == 2) {widm = t*t*sqrt(t)*mass/m*(9+3*z0+z0*z0)/(9+3*z+z*z);}
628 return widm;
629}
630double EvtD0ToKSpi0pi0pi0::widl1(double mass2, double mass, double sa, double sb, double sc, double r2)
631{
632 double widm = 0.;
633 double m = sqrt(sa);
634 double tmp = sb-sc;
635 double tmp1 = sa+tmp;
636 double q = fabs(0.25*tmp1*tmp1/sa-sb);
637 //if(q<0) q = 1e-16;
638 double tmp2 = mass2+tmp;
639 double q0 = fabs(0.25*tmp2*tmp2/mass2-sb);
640 //if(q0<0) q0 = 1e-16;
641 double z = q*r2;
642 double z0 = q0*r2;
643 double F = (1+z0)/(1+z);
644 double t = q/q0;
645 widm = t*sqrt(t)*mass/m*F;
646 return widm;
647}
648void EvtD0ToKSpi0pi0pi0::propagatorRBW(double mass2, double mass, double width, double sa, double sb, double sc, double r2, int l, double prop[2])
649{
650 double a[2], b[2];
651 a[0] = 1;
652 a[1] = 0;
653 b[0] = mass2-sa;
654 b[1] = -mass*width*wid(mass2,mass,sa,sb,sc,r2,l);
655 Com_Divide(a,b,prop);
656}
657void EvtD0ToKSpi0pi0pi0::propagatorRBWl1(double mass2, double mass, double width, double sa, double sb, double sc, double r2, double prop[2])
658{
659 double a[2], b[2];
660 a[0] = 1;
661 a[1] = 0;
662 b[0] = mass2-sa;
663 b[1] = -mass*width*widl1(mass2,mass,sa,sb,sc,r2);
664 Com_Divide(a,b,prop);
665}
666void EvtD0ToKSpi0pi0pi0::propagatorRBW_a1(double mass2, double mass, double width, double sa, double sb, double sc, double r2, int l, double prop[2])
667{
668 double a[2], b[2];
669 int iii=int(sa*1000/1.55)-115;
670 if(iii<0){ iii=0; }
671 double a1_width[2000]={//1885 bin, s = (0.17825, 3.1)
672 0.0000000172, 0.0000000487, 0.0000001049, 0.0000001927, 0.0000003185,
673 0.0000004888, 0.0000007099, 0.0000009878, 0.0000013285, 0.0000017378,
674 0.0000022212, 0.0000027845, 0.0000034328, 0.0000041717, 0.0000050061,
675 0.0000059414, 0.0000069824, 0.0000081342, 0.0000094014, 0.0000107890,
676 0.0000123016, 0.0000139437, 0.0000157200, 0.0000176350, 0.0000196931,
677 0.0000218986, 0.0000242559, 0.0000267692, 0.0000294428, 0.0000322808,
678 0.0000352875, 0.0000384668, 0.0000418228, 0.0000453596, 0.0000490811,
679 0.0000529913, 0.0000570941, 0.0000613934, 0.0000658931, 0.0000705969,
680 0.0000755087, 0.0000806324, 0.0000859716, 0.0000915300, 0.0000973115,
681 0.0001033197, 0.0001095583, 0.0001160310, 0.0001227415, 0.0001296933,
682 0.0001368901, 0.0001443355, 0.0001520332, 0.0001599867, 0.0001681995,
683 0.0001766753, 0.0001854177, 0.0001944301, 0.0002037162, 0.0002132795,
684 0.0002231235, 0.0002332517, 0.0002436677, 0.0002543750, 0.0002653771,
685 0.0002766775, 0.0002882799, 0.0003001876, 0.0003124041, 0.0003249331,
686 0.0003377780, 0.0003509423, 0.0003644296, 0.0003782433, 0.0003923870,
687 0.0004068643, 0.0004216785, 0.0004368333, 0.0004523323, 0.0004681788,
688 0.0004843765, 0.0005009290, 0.0005178397, 0.0005351122, 0.0005527502,
689 0.0005707571, 0.0005891365, 0.0006078922, 0.0006270275, 0.0006465462,
690 0.0006664518, 0.0006867480, 0.0007074384, 0.0007285267, 0.0007500165,
691 0.0007719114, 0.0007942151, 0.0008169314, 0.0008400639, 0.0008636163,
692 0.0008875923, 0.0009119957, 0.0009368303, 0.0009620997, 0.0009878078,
693 0.0010139580, 0.0010405550, 0.0010676020, 0.0010951030, 0.0011230610,
694 0.0011514820, 0.0011803670, 0.0012097230, 0.0012395510, 0.0012698570,
695 0.0013006440, 0.0013319160, 0.0013636770, 0.0013959320, 0.0014286840,
696 0.0014619370, 0.0014956950, 0.0015299630, 0.0015647450, 0.0016000440,
697 0.0016358650, 0.0016722130, 0.0017090900, 0.0017465020, 0.0017844530,
698 0.0018229470, 0.0018619890, 0.0019015820, 0.0019417310, 0.0019824400,
699 0.0020237150, 0.0020655590, 0.0021079760, 0.0021509730, 0.0021945510,
700 0.0022387180, 0.0022834760, 0.0023288310, 0.0023747880, 0.0024213500,
701 0.0024685230, 0.0025163120, 0.0025647210, 0.0026137560, 0.0026634200,
702 0.0027137200, 0.0027646590, 0.0028162430, 0.0028684780, 0.0029213670,
703 0.0029749170, 0.0030291320, 0.0030840170, 0.0031395780, 0.0031958200,
704 0.0032527490, 0.0033103700, 0.0033686880, 0.0034277080, 0.0034874370,
705 0.0035478800, 0.0036090420, 0.0036709290, 0.0037335480, 0.0037969030,
706 0.0038610000, 0.0039258460, 0.0039914470, 0.0040578080, 0.0041249360,
707 0.0041928370, 0.0042615160, 0.0043309810, 0.0044012380, 0.0044722930,
708 0.0045441520, 0.0046168220, 0.0046903100, 0.0047646230, 0.0048397670,
709 0.0049157480, 0.0049925750, 0.0050702540, 0.0051487920, 0.0052281970,
710 0.0053084750, 0.0053896340, 0.0054716810, 0.0055546240, 0.0056384710,
711 0.0057232280, 0.0058089050, 0.0058955090, 0.0059830470, 0.0060715290,
712 0.0061609620, 0.0062513540, 0.0063427140, 0.0064350500, 0.0065283720,
713 0.0066226870, 0.0067180050, 0.0068143350, 0.0069116850, 0.0070100650,
714 0.0071094850, 0.0072099530, 0.0073114800, 0.0074140740, 0.0075177470,
715 0.0076225070, 0.0077283660, 0.0078353330, 0.0079434180, 0.0080526330,
716 0.0081629880, 0.0082744940, 0.0083871620, 0.0085010030, 0.0086160290,
717 0.0087322510, 0.0088496800, 0.0089683290, 0.0090882100, 0.0092093350,
718 0.0093317160, 0.0094553660, 0.0095802980, 0.0097065250, 0.0098340590,
719 0.0099629140, 0.0100931000, 0.0102246400, 0.0103575500, 0.0104918200,
720 0.0106274900, 0.0107645700, 0.0109030700, 0.0110430000, 0.0111843800,
721 0.0113272300, 0.0114715700, 0.0116174000, 0.0117647500, 0.0119136300,
722 0.0120640600, 0.0122160600, 0.0123696300, 0.0125248100, 0.0126816100,
723 0.0128400500, 0.0130001400, 0.0131619100, 0.0133253800, 0.0134905500,
724 0.0136574600, 0.0138261300, 0.0139965600, 0.0141688000, 0.0143428500,
725 0.0145187400, 0.0146964900, 0.0148761200, 0.0150576500, 0.0152411200,
726 0.0154265300, 0.0156139200, 0.0158033100, 0.0159947200, 0.0161881800,
727 0.0163837200, 0.0165813500, 0.0167811100, 0.0169830300, 0.0171871200,
728 0.0173934200, 0.0176019600, 0.0178127600, 0.0180258500, 0.0182412700,
729 0.0184590400, 0.0186791900, 0.0189017500, 0.0191267600, 0.0193542500,
730 0.0195842500, 0.0198167900, 0.0200519000, 0.0202896300, 0.0205300000,
731 0.0207730500, 0.0210188200, 0.0212673300, 0.0215186400, 0.0217727700,
732 0.0220297700, 0.0222896700, 0.0225525200, 0.0228183400, 0.0230871900,
733 0.0233591000, 0.0236341200, 0.0239122800, 0.0241936400, 0.0244782300,
734 0.0247661000, 0.0250572900, 0.0253518600, 0.0256498400, 0.0259512800,
735 0.0262562300, 0.0265647400, 0.0268768600, 0.0271926300, 0.0275121100,
736 0.0278353500, 0.0281624000, 0.0284933100, 0.0288281300, 0.0291669200,
737 0.0295097300, 0.0298566200, 0.0302076400, 0.0305628500, 0.0309223000,
738 0.0312860500, 0.0316541600, 0.0320266900, 0.0324036900, 0.0327852300,
739 0.0331713600, 0.0335621500, 0.0339576500, 0.0343579300, 0.0347630500,
740 0.0351730600, 0.0355880400, 0.0360080500, 0.0364331400, 0.0368633900,
741 0.0372988500, 0.0377395900, 0.0381856600, 0.0386371500, 0.0390941000,
742 0.0395565900, 0.0400246700, 0.0404984100, 0.0409778800, 0.0414631300,
743 0.0419542300, 0.0424512400, 0.0429542200, 0.0434632400, 0.0439783500,
744 0.0444996200, 0.0450271000, 0.0455608500, 0.0461009400, 0.0466474000,
745 0.0472003200, 0.0477597200, 0.0483256700, 0.0488982300, 0.0494774300,
746 0.0500633300, 0.0506559700, 0.0512554000, 0.0518616600, 0.0524748000,
747 0.0530948400, 0.0537218300, 0.0543558000, 0.0549967800, 0.0556448000,
748 0.0562998900, 0.0569620700, 0.0576313600, 0.0583077800, 0.0589913500,
749 0.0596820600, 0.0603799400, 0.0610849900, 0.0617972100, 0.0625166000,
750 0.0632431500, 0.0639768500, 0.0647176900, 0.0654656600, 0.0662207300,
751 0.0669828800, 0.0677520900, 0.0685283100, 0.0693115200, 0.0701016800,
752 0.0708987400, 0.0717026500, 0.0725133700, 0.0733308400, 0.0741550000,
753 0.0749858000, 0.0758231500, 0.0766670000, 0.0775172700, 0.0783738800,
754 0.0792367600, 0.0801058200, 0.0809809800, 0.0818621400, 0.0827492100,
755 0.0836421000, 0.0845407100, 0.0854449400, 0.0863546800, 0.0872698400,
756 0.0881902900, 0.0891159400, 0.0900466700, 0.0909823700, 0.0919229100,
757 0.0928682000, 0.0938181000, 0.0947725000, 0.0957312800, 0.0966943100,
758 0.0976614900, 0.0986326700, 0.0996077500, 0.1005866000, 0.1015691000,
759 0.1025551000, 0.1035445000, 0.1045372000, 0.1055331000, 0.1065320000,
760 0.1075338000, 0.1085384000, 0.1095456000, 0.1105555000, 0.1115677000,
761 0.1125823000, 0.1135991000, 0.1146180000, 0.1156389000, 0.1166616000,
762 0.1176862000, 0.1187123000, 0.1197401000, 0.1207692000, 0.1217997000,
763 0.1228315000, 0.1238644000, 0.1248983000, 0.1259332000, 0.1269690000,
764 0.1280055000, 0.1290427000, 0.1300805000, 0.1311188000, 0.1321575000,
765 0.1331966000, 0.1342359000, 0.1352754000, 0.1363150000, 0.1373546000,
766 0.1383942000, 0.1394337000, 0.1404730000, 0.1415120000, 0.1425508000,
767 0.1435891000, 0.1446271000, 0.1456645000, 0.1467014000, 0.1477377000,
768 0.1487733000, 0.1498082000, 0.1508423000, 0.1518756000, 0.1529081000,
769 0.1539396000, 0.1549702000, 0.1559998000, 0.1570284000, 0.1580558000,
770 0.1590822000, 0.1601074000, 0.1611314000, 0.1621541000, 0.1631757000,
771 0.1641959000, 0.1652148000, 0.1662323000, 0.1672484000, 0.1682632000,
772 0.1692765000, 0.1702883000, 0.1712986000, 0.1723075000, 0.1733147000,
773 0.1743205000, 0.1753246000, 0.1763271000, 0.1773281000, 0.1783273000,
774 0.1793250000, 0.1803209000, 0.1813152000, 0.1823078000, 0.1832986000,
775 0.1842877000, 0.1852751000, 0.1862607000, 0.1872445000, 0.1882266000,
776 0.1892068000, 0.1901853000, 0.1911619000, 0.1921368000, 0.1931098000,
777 0.1940809000, 0.1950503000, 0.1960177000, 0.1969834000, 0.1979471000,
778 0.1989090000, 0.1998690000, 0.2008271000, 0.2017834000, 0.2027378000,
779 0.2036903000, 0.2046408000, 0.2055895000, 0.2065363000, 0.2074812000,
780 0.2084242000, 0.2093653000, 0.2103045000, 0.2112418000, 0.2121772000,
781 0.2131106000, 0.2140422000, 0.2149719000, 0.2158996000, 0.2168255000,
782 0.2177494000, 0.2186715000, 0.2195916000, 0.2205098000, 0.2214262000,
783 0.2223406000, 0.2232532000, 0.2241638000, 0.2250726000, 0.2259795000,
784 0.2268844000, 0.2277875000, 0.2286888000, 0.2295881000, 0.2304856000,
785 0.2313812000, 0.2322749000, 0.2331668000, 0.2340568000, 0.2349449000,
786 0.2358312000, 0.2367157000, 0.2375983000, 0.2384790000, 0.2393580000,
787 0.2402351000, 0.2411103000, 0.2419837000, 0.2428554000, 0.2437252000,
788 0.2445931000, 0.2454593000, 0.2463237000, 0.2471863000, 0.2480471000,
789 0.2489061000, 0.2497633000, 0.2506187000, 0.2514724000, 0.2523243000,
790 0.2531744000, 0.2540228000, 0.2548694000, 0.2557143000, 0.2565574000,
791 0.2573988000, 0.2582385000, 0.2590764000, 0.2599126000, 0.2607471000,
792 0.2615799000, 0.2624110000, 0.2632404000, 0.2640681000, 0.2648941000,
793 0.2657184000, 0.2665410000, 0.2673620000, 0.2681813000, 0.2689989000,
794 0.2698149000, 0.2706292000, 0.2714419000, 0.2722529000, 0.2730623000,
795 0.2738701000, 0.2746762000, 0.2754807000, 0.2762836000, 0.2770849000,
796 0.2778846000, 0.2786827000, 0.2794792000, 0.2802741000, 0.2810675000,
797 0.2818592000, 0.2826494000, 0.2834380000, 0.2842251000, 0.2850106000,
798 0.2857946000, 0.2865770000, 0.2873578000, 0.2881372000, 0.2889150000,
799 0.2896913000, 0.2904661000, 0.2912393000, 0.2920111000, 0.2927813000,
800 0.2935501000, 0.2943173000, 0.2950831000, 0.2958474000, 0.2966102000,
801 0.2973715000, 0.2981314000, 0.2988898000, 0.2996468000, 0.3004023000,
802 0.3011564000, 0.3019090000, 0.3026602000, 0.3034099000, 0.3041583000,
803 0.3049052000, 0.3056507000, 0.3063948000, 0.3071374000, 0.3078787000,
804 0.3086186000, 0.3093571000, 0.3100942000, 0.3108299000, 0.3115643000,
805 0.3122973000, 0.3130289000, 0.3137591000, 0.3144880000, 0.3152155000,
806 0.3159417000, 0.3166666000, 0.3173901000, 0.3181122000, 0.3188331000,
807 0.3195526000, 0.3202708000, 0.3209877000, 0.3217033000, 0.3224175000,
808 0.3231305000, 0.3238421000, 0.3245525000, 0.3252616000, 0.3259694000,
809 0.3266759000, 0.3273811000, 0.3280851000, 0.3287878000, 0.3294893000,
810 0.3301894000, 0.3308884000, 0.3315861000, 0.3322825000, 0.3329777000,
811 0.3336716000, 0.3343644000, 0.3350559000, 0.3357461000, 0.3364352000,
812 0.3371230000, 0.3378096000, 0.3384951000, 0.3391793000, 0.3398623000,
813 0.3405441000, 0.3412247000, 0.3419042000, 0.3425824000, 0.3432595000,
814 0.3439354000, 0.3446101000, 0.3452837000, 0.3459561000, 0.3466273000,
815 0.3472974000, 0.3479663000, 0.3486341000, 0.3493008000, 0.3499663000,
816 0.3506306000, 0.3512939000, 0.3519560000, 0.3526169000, 0.3532768000,
817 0.3539355000, 0.3545931000, 0.3552497000, 0.3559051000, 0.3565594000,
818 0.3572126000, 0.3578647000, 0.3585157000, 0.3591656000, 0.3598144000,
819 0.3604622000, 0.3611089000, 0.3617545000, 0.3623990000, 0.3630425000,
820 0.3636849000, 0.3643263000, 0.3649665000, 0.3656058000, 0.3662440000,
821 0.3668811000, 0.3675172000, 0.3681523000, 0.3687863000, 0.3694193000,
822 0.3700512000, 0.3706822000, 0.3713121000, 0.3719409000, 0.3725688000,
823 0.3731957000, 0.3738215000, 0.3744464000, 0.3750702000, 0.3756930000,
824 0.3763149000, 0.3769357000, 0.3775556000, 0.3781745000, 0.3787924000,
825 0.3794093000, 0.3800252000, 0.3806401000, 0.3812541000, 0.3818671000,
826 0.3824792000, 0.3830902000, 0.3837004000, 0.3843095000, 0.3849178000,
827 0.3855250000, 0.3861313000, 0.3867367000, 0.3873411000, 0.3879446000,
828 0.3885472000, 0.3891488000, 0.3897495000, 0.3903492000, 0.3909481000,
829 0.3915460000, 0.3921430000, 0.3927391000, 0.3933343000, 0.3939285000,
830 0.3945219000, 0.3951143000, 0.3957059000, 0.3962966000, 0.3968863000,
831 0.3974752000, 0.3980631000, 0.3986502000, 0.3992364000, 0.3998218000,
832 0.4004062000, 0.4009898000, 0.4015725000, 0.4021543000, 0.4027352000,
833 0.4033153000, 0.4038946000, 0.4044729000, 0.4050504000, 0.4056271000,
834 0.4062029000, 0.4067778000, 0.4073519000, 0.4079252000, 0.4084976000,
835 0.4090692000, 0.4096399000, 0.4102098000, 0.4107789000, 0.4113472000,
836 0.4119146000, 0.4124812000, 0.4130470000, 0.4136119000, 0.4141760000,
837 0.4147394000, 0.4153019000, 0.4158636000, 0.4164245000, 0.4169846000,
838 0.4175439000, 0.4181024000, 0.4186601000, 0.4192170000, 0.4197731000,
839 0.4203284000, 0.4208830000, 0.4214367000, 0.4219897000, 0.4225419000,
840 0.4230933000, 0.4236439000, 0.4241938000, 0.4247429000, 0.4252912000,
841 0.4258388000, 0.4263856000, 0.4269317000, 0.4274769000, 0.4280215000,
842 0.4285652000, 0.4291083000, 0.4296505000, 0.4301921000, 0.4307329000,
843 0.4312729000, 0.4318122000, 0.4323508000, 0.4328886000, 0.4334257000,
844 0.4339621000, 0.4344977000, 0.4350326000, 0.4355668000, 0.4361003000,
845 0.4366331000, 0.4371651000, 0.4376964000, 0.4382270000, 0.4387569000,
846 0.4392861000, 0.4398146000, 0.4403424000, 0.4408695000, 0.4413959000,
847 0.4419216000, 0.4424466000, 0.4429709000, 0.4434945000, 0.4440174000,
848 0.4445396000, 0.4450612000, 0.4455821000, 0.4461023000, 0.4466218000,
849 0.4471407000, 0.4476589000, 0.4481764000, 0.4486932000, 0.4492094000,
850 0.4497249000, 0.4502398000, 0.4507540000, 0.4512675000, 0.4517804000,
851 0.4522926000, 0.4528042000, 0.4533152000, 0.4538255000, 0.4543351000,
852 0.4548442000, 0.4553525000, 0.4558603000, 0.4563674000, 0.4568739000,
853 0.4573797000, 0.4578849000, 0.4583895000, 0.4588935000, 0.4593969000,
854 0.4598996000, 0.4604018000, 0.4609033000, 0.4614042000, 0.4619045000,
855 0.4624042000, 0.4629032000, 0.4634017000, 0.4638996000, 0.4643969000,
856 0.4648936000, 0.4653897000, 0.4658852000, 0.4663802000, 0.4668745000,
857 0.4673683000, 0.4678614000, 0.4683541000, 0.4688461000, 0.4693375000,
858 0.4698284000, 0.4703188000, 0.4708085000, 0.4712977000, 0.4717863000,
859 0.4722744000, 0.4727619000, 0.4732489000, 0.4737353000, 0.4742212000,
860 0.4747065000, 0.4751913000, 0.4756756000, 0.4761593000, 0.4766424000,
861 0.4771251000, 0.4776072000, 0.4780888000, 0.4785699000, 0.4790504000,
862 0.4795304000, 0.4800099000, 0.4804889000, 0.4809674000, 0.4814454000,
863 0.4819229000, 0.4823999000, 0.4828764000, 0.4833524000, 0.4838279000,
864 0.4843029000, 0.4847774000, 0.4852515000, 0.4857250000, 0.4861981000,
865 0.4866708000, 0.4871429000, 0.4876146000, 0.4880858000, 0.4885566000,
866 0.4890269000, 0.4894968000, 0.4899662000, 0.4904351000, 0.4909037000,
867 0.4913718000, 0.4918394000, 0.4923067000, 0.4927735000, 0.4932398000,
868 0.4937058000, 0.4941713000, 0.4946365000, 0.4951012000, 0.4955655000,
869 0.4960295000, 0.4964930000, 0.4969562000, 0.4974189000, 0.4978813000,
870 0.4983434000, 0.4988050000, 0.4992663000, 0.4997272000, 0.5001878000,
871 0.5006480000, 0.5011079000, 0.5015674000, 0.5020266000, 0.5024855000,
872 0.5029440000, 0.5034023000, 0.5038602000, 0.5043178000, 0.5047751000,
873 0.5052321000, 0.5056889000, 0.5061453000, 0.5066015000, 0.5070574000,
874 0.5075131000, 0.5079685000, 0.5084237000, 0.5088786000, 0.5093333000,
875 0.5097878000, 0.5102420000, 0.5106961000, 0.5111499000, 0.5116036000,
876 0.5120571000, 0.5125104000, 0.5129636000, 0.5134166000, 0.5138694000,
877 0.5143221000, 0.5147747000, 0.5152272000, 0.5156796000, 0.5161319000,
878 0.5165842000, 0.5170363000, 0.5174884000, 0.5179405000, 0.5183925000,
879 0.5188445000, 0.5192965000, 0.5197485000, 0.5202005000, 0.5206526000,
880 0.5211048000, 0.5215570000, 0.5220092000, 0.5224616000, 0.5229141000,
881 0.5233668000, 0.5238195000, 0.5242725000, 0.5247257000, 0.5251790000,
882 0.5256326000, 0.5260864000, 0.5265405000, 0.5269949000, 0.5274496000,
883 0.5279047000, 0.5283601000, 0.5288159000, 0.5292721000, 0.5297287000,
884 0.5301858000, 0.5306434000, 0.5311015000, 0.5315601000, 0.5320194000,
885 0.5324792000, 0.5329396000, 0.5334008000, 0.5338626000, 0.5343252000,
886 0.5347885000, 0.5352526000, 0.5357176000, 0.5361834000, 0.5366502000,
887 0.5371179000, 0.5375866000, 0.5380563000, 0.5385271000, 0.5389989000,
888 0.5394720000, 0.5399462000, 0.5404217000, 0.5408984000, 0.5413764000,
889 0.5418558000, 0.5423367000, 0.5428189000, 0.5433026000, 0.5437879000,
890 0.5442747000, 0.5447631000, 0.5452532000, 0.5457450000, 0.5462385000,
891 0.5467337000, 0.5472307000, 0.5477296000, 0.5482303000, 0.5487328000,
892 0.5492373000, 0.5497437000, 0.5502520000, 0.5507623000, 0.5512745000,
893 0.5517887000, 0.5523048000, 0.5528230000, 0.5533430000, 0.5538651000,
894 0.5543890000, 0.5549149000, 0.5554426000, 0.5559722000, 0.5565036000,
895 0.5570367000, 0.5575716000, 0.5581082000, 0.5586464000, 0.5591862000,
896 0.5597274000, 0.5602702000, 0.5608143000, 0.5613597000, 0.5619063000,
897 0.5624541000, 0.5630030000, 0.5635529000, 0.5641037000, 0.5646553000,
898 0.5652078000, 0.5657609000, 0.5663146000, 0.5668689000, 0.5674236000,
899 0.5679787000, 0.5685341000, 0.5690898000, 0.5696456000, 0.5702015000,
900 0.5707575000, 0.5713134000, 0.5718692000, 0.5724249000, 0.5729803000,
901 0.5735355000, 0.5740903000, 0.5746448000, 0.5751989000, 0.5757525000,
902 0.5763056000, 0.5768581000, 0.5774101000, 0.5779615000, 0.5785121000,
903 0.5790622000, 0.5796114000, 0.5801600000, 0.5807078000, 0.5812548000,
904 0.5818009000, 0.5823462000, 0.5828907000, 0.5834343000, 0.5839770000,
905 0.5845188000, 0.5850597000, 0.5855996000, 0.5861386000, 0.5866767000,
906 0.5872137000, 0.5877498000, 0.5882850000, 0.5888191000, 0.5893522000,
907 0.5898844000, 0.5904155000, 0.5909457000, 0.5914748000, 0.5920029000,
908 0.5925300000, 0.5930560000, 0.5935811000, 0.5941051000, 0.5946282000,
909 0.5951502000, 0.5956711000, 0.5961911000, 0.5967100000, 0.5972280000,
910 0.5977449000, 0.5982608000, 0.5987757000, 0.5992896000, 0.5998025000,
911 0.6003144000, 0.6008253000, 0.6013352000, 0.6018441000, 0.6023520000,
912 0.6028589000, 0.6033649000, 0.6038699000, 0.6043739000, 0.6048769000,
913 0.6053790000, 0.6058801000, 0.6063803000, 0.6068795000, 0.6073777000,
914 0.6078750000, 0.6083714000, 0.6088668000, 0.6093613000, 0.6098549000,
915 0.6103476000, 0.6108393000, 0.6113301000, 0.6118201000, 0.6123091000,
916 0.6127972000, 0.6132844000, 0.6137707000, 0.6142562000, 0.6147407000,
917 0.6152244000, 0.6157072000, 0.6161892000, 0.6166703000, 0.6171505000,
918 0.6176298000, 0.6181084000, 0.6185860000, 0.6190629000, 0.6195388000,
919 0.6200140000, 0.6204883000, 0.6209618000, 0.6214345000, 0.6219064000,
920 0.6223774000, 0.6228476000, 0.6233171000, 0.6237857000, 0.6242536000,
921 0.6247206000, 0.6251869000, 0.6256523000, 0.6261170000, 0.6265809000,
922 0.6270441000, 0.6275064000, 0.6279681000, 0.6284289000, 0.6288890000,
923 0.6293483000, 0.6298069000, 0.6302647000, 0.6307218000, 0.6311782000,
924 0.6316338000, 0.6320887000, 0.6325428000, 0.6329963000, 0.6334490000,
925 0.6339009000, 0.6343522000, 0.6348028000, 0.6352526000, 0.6357018000,
926 0.6361502000, 0.6365979000, 0.6370450000, 0.6374913000, 0.6379370000,
927 0.6383820000, 0.6388262000, 0.6392699000, 0.6397128000, 0.6401550000,
928 0.6405966000, 0.6410375000, 0.6414778000, 0.6419174000, 0.6423563000,
929 0.6427946000, 0.6432322000, 0.6436692000, 0.6441055000, 0.6445412000,
930 0.6449762000, 0.6454106000, 0.6458443000, 0.6462774000, 0.6467099000,
931 0.6471418000, 0.6475730000, 0.6480036000, 0.6484336000, 0.6488629000,
932 0.6492917000, 0.6497198000, 0.6501473000, 0.6505742000, 0.6510005000,
933 0.6514262000, 0.6518513000, 0.6522758000, 0.6526997000, 0.6531230000,
934 0.6535457000, 0.6539678000, 0.6543893000, 0.6548103000, 0.6552306000,
935 0.6556504000, 0.6560696000, 0.6564882000, 0.6569062000, 0.6573237000,
936 0.6577406000, 0.6581569000, 0.6585727000, 0.6589879000, 0.6594025000,
937 0.6598166000, 0.6602301000, 0.6606431000, 0.6610555000, 0.6614673000,
938 0.6618787000, 0.6622894000, 0.6626996000, 0.6631093000, 0.6635184000,
939 0.6639270000, 0.6643350000, 0.6647425000, 0.6651495000, 0.6655560000,
940 0.6659619000, 0.6663672000, 0.6667721000, 0.6671764000, 0.6675802000,
941 0.6679835000, 0.6683863000, 0.6687885000, 0.6691902000, 0.6695914000,
942 0.6699921000, 0.6703923000, 0.6707920000, 0.6711912000, 0.6715898000,
943 0.6719880000, 0.6723856000, 0.6727828000, 0.6731794000, 0.6735756000,
944 0.6739712000, 0.6743664000, 0.6747610000, 0.6751552000, 0.6755489000,
945 0.6759421000, 0.6763348000, 0.6767270000, 0.6771187000, 0.6775100000,
946 0.6779008000, 0.6782910000, 0.6786809000, 0.6790702000, 0.6794590000,
947 0.6798474000, 0.6802353000, 0.6806228000, 0.6810097000, 0.6813962000,
948 0.6817823000, 0.6821678000, 0.6825530000, 0.6829376000, 0.6833218000,
949 0.6837055000, 0.6840888000, 0.6844716000, 0.6848539000, 0.6852358000,
950 0.6856172000, 0.6859982000, 0.6863788000, 0.6867588000, 0.6871385000,
951 0.6875177000, 0.6878964000, 0.6882747000, 0.6886526000, 0.6890300000,
952 0.6894070000, 0.6897835000, 0.6901596000, 0.6905353000, 0.6909105000,
953 0.6912853000, 0.6916596000, 0.6920336000, 0.6924071000, 0.6927801000,
954 0.6931528000, 0.6935250000, 0.6938967000, 0.6942681000, 0.6946390000,
955 0.6950095000, 0.6953796000, 0.6957493000, 0.6961185000, 0.6964874000,
956 0.6968558000, 0.6972238000, 0.6975914000, 0.6979585000, 0.6983253000,
957 0.6986916000, 0.6990576000, 0.6994231000, 0.6997882000, 0.7001529000,
958 0.7005172000, 0.7008811000, 0.7012446000, 0.7016077000, 0.7019704000,
959 0.7023326000, 0.7026945000, 0.7030560000, 0.7034171000, 0.7037778000,
960 0.7041381000, 0.7044980000, 0.7048575000, 0.7052166000, 0.7055753000,
961 0.7059336000, 0.7062916000, 0.7066491000, 0.7070063000, 0.7073630000,
962 0.7077194000, 0.7080754000, 0.7084310000, 0.7087863000, 0.7091411000,
963 0.7094956000, 0.7098497000, 0.7102034000, 0.7105567000, 0.7109096000,
964 0.7112622000, 0.7116144000, 0.7119662000, 0.7123177000, 0.7126687000,
965 0.7130194000, 0.7133697000, 0.7137197000, 0.7140693000, 0.7144185000,
966 0.7147673000, 0.7151158000, 0.7154639000, 0.7158117000, 0.7161591000,
967 0.7165061000, 0.7168527000, 0.7171990000, 0.7175450000, 0.7178905000,
968 0.7182357000, 0.7185806000, 0.7189251000, 0.7192692000, 0.7196130000,
969 0.7199564000, 0.7202995000, 0.7206422000, 0.7209845000, 0.7213266000,
970 0.7216682000, 0.7220095000, 0.7223505000, 0.7226911000, 0.7230313000,
971 0.7233712000, 0.7237108000, 0.7240500000, 0.7243889000, 0.7247274000,
972 0.7250656000, 0.7254034000, 0.7257409000, 0.7260780000, 0.7264148000,
973 0.7267513000, 0.7270874000, 0.7274232000, 0.7277587000, 0.7280938000,
974 0.7284286000, 0.7287630000, 0.7290971000, 0.7294309000, 0.7297643000,
975 0.7300974000, 0.7304302000, 0.7307626000, 0.7310947000, 0.7314265000,
976 0.7317579000, 0.7320891000, 0.7324198000, 0.7327503000, 0.7330804000,
977 0.7334102000, 0.7337397000, 0.7340689000, 0.7343977000, 0.7347262000,
978 0.7350544000, 0.7353823000, 0.7357098000, 0.7360370000, 0.7363639000,
979 0.7366905000, 0.7370168000, 0.7373427000, 0.7376683000, 0.7379936000,
980 0.7383186000, 0.7386433000, 0.7389677000, 0.7392917000, 0.7396155000,
981 0.7399389000, 0.7402620000, 0.7405848000, 0.7409073000, 0.7412294000,
982 0.7415513000, 0.7418728000, 0.7421941000, 0.7425150000, 0.7428357000,
983 0.7431560000, 0.7434760000, 0.7437957000, 0.7441151000, 0.7444342000,
984 0.7447530000, 0.7450715000, 0.7453897000, 0.7457076000, 0.7460251000,
985 0.7463424000, 0.7466594000, 0.7469761000, 0.7472925000, 0.7476085000,
986 0.7479243000, 0.7482398000, 0.7485550000, 0.7488699000, 0.7491845000,
987 0.7494988000, 0.7498128000, 0.7501265000, 0.7504399000, 0.7507531000,
988 0.7510659000, 0.7513784000, 0.7516907000, 0.7520027000, 0.7523143000,
989 0.7526257000, 0.7529368000, 0.7532476000, 0.7535581000, 0.7538683000,
990 0.7541783000, 0.7544879000, 0.7547973000, 0.7551064000, 0.7554152000,
991 0.7557237000, 0.7560319000, 0.7563398000, 0.7566475000, 0.7569549000,
992 0.7572620000, 0.7575688000, 0.7578753000, 0.7581816000, 0.7584875000,
993 0.7587932000, 0.7590986000, 0.7594038000, 0.7597086000, 0.7600132000,
994 0.7603175000, 0.7606215000, 0.7609253000, 0.7612288000, 0.7615320000,
995 0.7618349000, 0.7621376000, 0.7624399000, 0.7627420000, 0.7630439000,
996 0.7633454000, 0.7636467000, 0.7639477000, 0.7642485000, 0.7645490000,
997 0.7648492000, 0.7651491000, 0.7654488000, 0.7657482000, 0.7660473000,
998 0.7663462000, 0.7666448000, 0.7669431000, 0.7672412000, 0.7675390000,
999 0.7678366000, 0.7681338000, 0.7684309000, 0.7687276000, 0.7690241000,
1000 0.7693203000, 0.7696163000, 0.7699120000, 0.7702074000, 0.7705026000,
1001 0.7707975000, 0.7710922000, 0.7713866000, 0.7716807000, 0.7719746000,
1002 0.7722682000, 0.7725616000, 0.7728547000, 0.7731475000, 0.7734401000,
1003 0.7737325000, 0.7740245000, 0.7743164000, 0.7746079000, 0.7748993000,
1004 0.7751903000, 0.7754811000, 0.7757717000, 0.7760620000, 0.7763521000,
1005 0.7766419000, 0.7769314000, 0.7772207000, 0.7775098000, 0.7777986000,
1006 0.7780871000, 0.7783754000, 0.7786635000, 0.7789513000, 0.7792389000,
1007 0.7795262000, 0.7798132000, 0.7801000000, 0.7803866000, 0.7806729000,
1008 0.7809590000, 0.7812449000, 0.7815304000, 0.7818158000, 0.7821009000,
1009 0.7823858000, 0.7826704000, 0.7829547000, 0.7832389000, 0.7835228000,
1010 0.7838064000, 0.7840898000, 0.7843730000, 0.7846559000, 0.7849386000,
1011 0.7852210000, 0.7855032000, 0.7857852000, 0.7860669000, 0.7863484000,
1012 0.7866297000, 0.7869107000, 0.7871915000, 0.7874720000, 0.7877523000,
1013 0.7880324000, 0.7883122000, 0.7885919000, 0.7888712000, 0.7891504000,
1014 0.7894293000, 0.7897079000, 0.7899864000, 0.7902646000, 0.7905425000,
1015 0.7908203000, 0.7910978000, 0.7913750000, 0.7916521000, 0.7919289000,
1016 0.7922055000, 0.7924818000, 0.7927579000, 0.7930338000, 0.7933095000,
1017 0.7935849000, 0.7938601000, 0.7941351000, 0.7944099000, 0.7946844000,
1018 0.7949587000, 0.7952328000, 0.7955066000, 0.7957803000, 0.7960537000,
1019 0.7963268000, 0.7965998000, 0.7968725000, 0.7971450000, 0.7974173000,
1020 0.7976893000, 0.7979612000, 0.7982328000, 0.7985041000, 0.7987753000,
1021 0.7990463000, 0.7993170000, 0.7995875000, 0.7998578000, 0.8001278000,
1022 0.8003977000, 0.8006673000, 0.8009367000, 0.8012059000, 0.8014748000,
1023 0.8017436000, 0.8020121000, 0.8022804000, 0.8025485000, 0.8028164000,
1024 0.8030841000, 0.8033515000, 0.8036187000, 0.8038857000, 0.8041525000,
1025 0.8044191000, 0.8046855000, 0.8049517000, 0.8052176000, 0.8054833000,
1026 0.8057488000, 0.8060141000, 0.8062792000, 0.8065441000, 0.8068088000,
1027 0.8070732000, 0.8073375000, 0.8076015000, 0.8078653000, 0.8081289000,
1028 0.8083923000, 0.8086555000, 0.8089185000, 0.8091813000, 0.8094438000,
1029 0.8097062000, 0.8099683000, 0.8102303000, 0.8104920000, 0.8107535000,
1030 0.8110148000, 0.8112760000, 0.8115369000, 0.8117976000, 0.8120580000,
1031 0.8123183000, 0.8125784000, 0.8128383000, 0.8130980000, 0.8133574000,
1032 0.8136167000, 0.8138757000, 0.8141346000, 0.8143933000, 0.8146517000,
1033 0.8149099000, 0.8151680000, 0.8154258000, 0.8156835000, 0.8159409000,
1034 0.8161982000, 0.8164552000, 0.8167120000, 0.8169687000, 0.8172251000,
1035 0.8174813000, 0.8177374000, 0.8179932000, 0.8182488000, 0.8185043000,
1036 0.8187595000, 0.8190146000, 0.8192694000, 0.8195241000, 0.8197785000,
1037 0.8200328000, 0.8202868000, 0.8205407000, 0.8207944000, 0.8210478000,
1038 0.8213011000, 0.8215542000, 0.8218071000, 0.8220598000, 0.8223122000,
1039 0.8225645000, 0.8228167000, 0.8230686000, 0.8233203000, 0.8235718000,
1040 0.8238232000, 0.8240743000, 0.8243252000, 0.8245760000, 0.8248266000,
1041 0.8250769000, 0.8253271000, 0.8255771000, 0.8258269000, 0.8260765000,
1042 0.8263259000, 0.8265752000, 0.8268242000, 0.8270731000, 0.8273217000,
1043 0.8275702000, 0.8278185000, 0.8280666000, 0.8283145000, 0.8285622000,
1044 0.8288097000, 0.8290571000, 0.8293043000, 0.8295512000, 0.8297980000,
1045 0.8300446000, 0.8302910000, 0.8305373000, 0.8307833000, 0.8310292000,
1046 0.8312748000, 0.8315203000, 0.8317656000, 0.8320107000, 0.8322557000,
1047 0.8325004000, 0.8327450000, 0.8329894000, 0.8332336000, 0.8334776000,
1048 0.8337214000, 0.8339651000, 0.8342085000, 0.8344518000, 0.8346949000
1049 };
1050 double width_a1=a1_width[iii];
1051 a[0] = 1;
1052 a[1] = 0;
1053 b[0] = mass2-sa;
1054 //b[1] = -mass*width*wid(mass2,mass,sa,sb,sc,r2,l);
1055 b[1] = -mass*width_a1;
1056 Com_Divide(a,b,prop);
1057}
1058void EvtD0ToKSpi0pi0pi0::propagatorRBW_K1(double mass2, double mass, double width, double sa, double sb, double sc, double r2, int l, double prop[2])
1059{
1060 double a[2], b[2];
1061 int iii=int(sa*1000/2)-300;//(4000-0)/2000=2
1062 if(iii<0){ iii=0; }
1063 double K1270_width[2000]={//1700 bin, s = (0.6, 4)
1064 0.0000000014, 0.0000000052, 0.0000000127, 0.0000000252, 0.0000000442,
1065 0.0000000709, 0.0000001067, 0.0000001528, 0.0000002108, 0.0000002819,
1066 0.0000003675, 0.0000004689, 0.0000005876, 0.0000007249, 0.0000008822,
1067 0.0000010609, 0.0000012624, 0.0000014882, 0.0000017396, 0.0000020181,
1068 0.0000023251, 0.0000026620, 0.0000030303, 0.0000034314, 0.0000038668,
1069 0.0000043379, 0.0000048463, 0.0000053933, 0.0000059805, 0.0000066094,
1070 0.0000072815, 0.0000079983, 0.0000087612, 0.0000095719, 0.0000104318,
1071 0.0000113424, 0.0000123054, 0.0000133223, 0.0000143946, 0.0000155239,
1072 0.0000167117, 0.0000179597, 0.0000192695, 0.0000206426, 0.0000220807,
1073 0.0000235853, 0.0000251581, 0.0000268008, 0.0000285149, 0.0000303022,
1074 0.0000321643, 0.0000341028, 0.0000361195, 0.0000382160, 0.0000403941,
1075 0.0000426554, 0.0000450017, 0.0000474347, 0.0000499561, 0.0000525678,
1076 0.0000552715, 0.0000580689, 0.0000609619, 0.0000639522, 0.0000670417,
1077 0.0000702323, 0.0000735256, 0.0000769237, 0.0000804283, 0.0000840414,
1078 0.0000877648, 0.0000916004, 0.0000955503, 0.0000996163, 0.0001038003,
1079 0.0001081045, 0.0001125306, 0.0001170808, 0.0001217571, 0.0001265615,
1080 0.0001314961, 0.0001365630, 0.0001417641, 0.0001471018, 0.0001525781,
1081 0.0001581951, 0.0001639551, 0.0001698602, 0.0001759127, 0.0001821148,
1082 0.0001884687, 0.0001949769, 0.0002016415, 0.0002084650, 0.0002154497,
1083 0.0002225981, 0.0002299124, 0.0002373952, 0.0002450491, 0.0002528764,
1084 0.0002608798, 0.0002690618, 0.0002774250, 0.0002859721, 0.0002947058,
1085 0.0003036288, 0.0003127438, 0.0003220537, 0.0003315613, 0.0003412695,
1086 0.0003511812, 0.0003612993, 0.0003716269, 0.0003821671, 0.0003929230,
1087 0.0004038976, 0.0004150944, 0.0004265164, 0.0004381671, 0.0004500499,
1088 0.0004621681, 0.0004745254, 0.0004871253, 0.0004999714, 0.0005130674,
1089 0.0005264172, 0.0005400246, 0.0005538936, 0.0005680282, 0.0005824325,
1090 0.0005971108, 0.0006120672, 0.0006273063, 0.0006428325, 0.0006586504,
1091 0.0006747647, 0.0006911803, 0.0007079021, 0.0007249351, 0.0007422845,
1092 0.0007599558, 0.0007779542, 0.0007962855, 0.0008149555, 0.0008339699,
1093 0.0008533351, 0.0008730571, 0.0008931425, 0.0009135979, 0.0009344302,
1094 0.0009556463, 0.0009772537, 0.0009992598, 0.0010216720, 0.0010444990,
1095 0.0010677490, 0.0010914300, 0.0011155510, 0.0011401210, 0.0011651510,
1096 0.0011906480, 0.0012166250, 0.0012430910, 0.0012700570, 0.0012975350,
1097 0.0013255370, 0.0013540740, 0.0013831600, 0.0014128090, 0.0014430330,
1098 0.0014738470, 0.0015052670, 0.0015373090, 0.0015699870, 0.0016033210,
1099 0.0016373270, 0.0016720240, 0.0017074330, 0.0017435730, 0.0017804660,
1100 0.0018181340, 0.0018566010, 0.0018958920, 0.0019360320, 0.0019770490,
1101 0.0020189710, 0.0020618280, 0.0021056510, 0.0021504740, 0.0021963300,
1102 0.0022432570, 0.0022912920, 0.0023404760, 0.0023908500, 0.0024424590,
1103 0.0024953480, 0.0025495680, 0.0026051670, 0.0026622000, 0.0027207220,
1104 0.0027807900, 0.0028424670, 0.0029058130, 0.0029708960, 0.0030377810,
1105 0.0031065390, 0.0031772420, 0.0032499620, 0.0033247750, 0.0034017560,
1106 0.0034809810, 0.0035625250, 0.0036464650, 0.0037328720, 0.0038218190,
1107 0.0039133710, 0.0040075910, 0.0041045360, 0.0042042540, 0.0043067850,
1108 0.0044121600, 0.0045203990, 0.0046315090, 0.0047454840, 0.0048623040,
1109 0.0049819360, 0.0051043310, 0.0052294280, 0.0053571500, 0.0054874080,
1110 0.0056201030, 0.0057551230, 0.0058923500, 0.0060316590, 0.0061729200,
1111 0.0063159990, 0.0064607640, 0.0066070800, 0.0067548180, 0.0069038480,
1112 0.0070540500, 0.0072053060, 0.0073575050, 0.0075105450, 0.0076643270,
1113 0.0078187630, 0.0079737720, 0.0081292780, 0.0082852130, 0.0084415170,
1114 0.0085981350, 0.0087550200, 0.0089121270, 0.0090694200, 0.0092268660,
1115 0.0093844380, 0.0095421120, 0.0096998670, 0.0098576870, 0.0100155600,
1116 0.0101734700, 0.0103314200, 0.0104894000, 0.0106474000, 0.0108054200,
1117 0.0109634700, 0.0111215500, 0.0112796500, 0.0114377900, 0.0115959700,
1118 0.0117541900, 0.0119124600, 0.0120707900, 0.0122292000, 0.0123876800,
1119 0.0125462500, 0.0127049200, 0.0128637100, 0.0130226100, 0.0131816400,
1120 0.0133408200, 0.0135001600, 0.0136596700, 0.0138193500, 0.0139792400,
1121 0.0141393300, 0.0142996400, 0.0144601800, 0.0146209700, 0.0147820200,
1122 0.0149433400, 0.0151049500, 0.0152668600, 0.0154290800, 0.0155916300,
1123 0.0157545200, 0.0159177700, 0.0160813900, 0.0162453900, 0.0164097800,
1124 0.0165745900, 0.0167398200, 0.0169054800, 0.0170716000, 0.0172381900,
1125 0.0174052600, 0.0175728200, 0.0177408900, 0.0179094800, 0.0180786100,
1126 0.0182483000, 0.0184185500, 0.0185893800, 0.0187608000, 0.0189328400,
1127 0.0191054900, 0.0192787900, 0.0194527400, 0.0196273600, 0.0198026700,
1128 0.0199786700, 0.0201553900, 0.0203328300, 0.0205110200, 0.0206899700,
1129 0.0208696900, 0.0210502100, 0.0212315300, 0.0214136700, 0.0215966500,
1130 0.0217804800, 0.0219651900, 0.0221507800, 0.0223372700, 0.0225246900,
1131 0.0227130400, 0.0229023400, 0.0230926100, 0.0232838700, 0.0234761300,
1132 0.0236694200, 0.0238637400, 0.0240591200, 0.0242555800, 0.0244531300,
1133 0.0246517900, 0.0248515800, 0.0250525200, 0.0252546300, 0.0254579200,
1134 0.0256624200, 0.0258681400, 0.0260751100, 0.0262833500, 0.0264928700,
1135 0.0267036900, 0.0269158400, 0.0271293400, 0.0273442100, 0.0275604600,
1136 0.0277781300, 0.0279972300, 0.0282177800, 0.0284398100, 0.0286633400,
1137 0.0288884000, 0.0291149900, 0.0293431600, 0.0295729200, 0.0298042900,
1138 0.0300373100, 0.0302719900, 0.0305083600, 0.0307464500, 0.0309862700,
1139 0.0312278600, 0.0314712500, 0.0317164500, 0.0319635000, 0.0322124200,
1140 0.0324632400, 0.0327159900, 0.0329706900, 0.0332273800, 0.0334860800,
1141 0.0337468200, 0.0340096300, 0.0342745400, 0.0345415800, 0.0348107800,
1142 0.0350821700, 0.0353557800, 0.0356316400, 0.0359097900, 0.0361902600,
1143 0.0364730800, 0.0367582700, 0.0370458900, 0.0373359500, 0.0376284900,
1144 0.0379235500, 0.0382211500, 0.0385213500, 0.0388241600, 0.0391296300,
1145 0.0394377800, 0.0397486700, 0.0400623100, 0.0403787600, 0.0406980400,
1146 0.0410202000, 0.0413452600, 0.0416732700, 0.0420042700, 0.0423382900,
1147 0.0426753700, 0.0430155500, 0.0433588700, 0.0437053700, 0.0440550800,
1148 0.0444080500, 0.0447643100, 0.0451239000, 0.0454868700, 0.0458532400,
1149 0.0462230700, 0.0465963900, 0.0469732300, 0.0473536500, 0.0477376700,
1150 0.0481253400, 0.0485166900, 0.0489117600, 0.0493106000, 0.0497132400,
1151 0.0501197100, 0.0505300600, 0.0509443200, 0.0513625300, 0.0517847200,
1152 0.0522109400, 0.0526412100, 0.0530755700, 0.0535140600, 0.0539567000,
1153 0.0544035400, 0.0548545900, 0.0553099000, 0.0557694900, 0.0562334000,
1154 0.0567016400, 0.0571742500, 0.0576512600, 0.0581326800, 0.0586185500,
1155 0.0591088800, 0.0596036900, 0.0601030200, 0.0606068600, 0.0611152500,
1156 0.0616281900, 0.0621457100, 0.0626678100, 0.0631945000, 0.0637258000,
1157 0.0642617000, 0.0648022200, 0.0653473700, 0.0658971300, 0.0664515200,
1158 0.0670105300, 0.0675741500, 0.0681423900, 0.0687152300, 0.0692926600,
1159 0.0698746700, 0.0704612600, 0.0710524000, 0.0716480700, 0.0722482600,
1160 0.0728529400, 0.0734620900, 0.0740756900, 0.0746937100, 0.0753161100,
1161 0.0759428600, 0.0765739400, 0.0772093000, 0.0778489100, 0.0784927300,
1162 0.0791407200, 0.0797928300, 0.0804490200, 0.0811092400, 0.0817734600,
1163 0.0824416000, 0.0831136300, 0.0837895000, 0.0844691400, 0.0851525100,
1164 0.0858395400, 0.0865301900, 0.0872243800, 0.0879220700, 0.0886231900,
1165 0.0893276700, 0.0900354700, 0.0907465100, 0.0914607200, 0.0921780600,
1166 0.0928984400, 0.0936218200, 0.0943481100, 0.0950772500, 0.0958091900,
1167 0.1023867000, 0.1055505000, 0.1081475000, 0.1104523000, 0.1125711000,
1168 0.1145581000, 0.1164458000, 0.1182550000, 0.1200004000, 0.1216926000,
1169 0.1233395000, 0.1249474000, 0.1265212000, 0.1280649000, 0.1295817000,
1170 0.1310743000, 0.1325452000, 0.1339961000, 0.1354288000, 0.1368448000,
1171 0.1382454000, 0.1396316000, 0.1410044000, 0.1423647000, 0.1437133000,
1172 0.1450510000, 0.1463782000, 0.1476956000, 0.1490038000, 0.1503031000,
1173 0.1515941000, 0.1528770000, 0.1541523000, 0.1554203000, 0.1566812000,
1174 0.1579354000, 0.1591832000, 0.1604247000, 0.1616602000, 0.1628899000,
1175 0.1641140000, 0.1653326000, 0.1665460000, 0.1677543000, 0.1689576000,
1176 0.1701561000, 0.1713499000, 0.1725391000, 0.1737239000, 0.1749043000,
1177 0.1760805000, 0.1772526000, 0.1784206000, 0.1795847000, 0.1807449000,
1178 0.1819014000, 0.1830541000, 0.1842031000, 0.1853487000, 0.1864907000,
1179 0.1876292000, 0.1887644000, 0.1898963000, 0.1910250000, 0.1921504000,
1180 0.1932727000, 0.1943919000, 0.1955080000, 0.1966211000, 0.1977313000,
1181 0.1988386000, 0.1999430000, 0.2010446000, 0.2021434000, 0.2032395000,
1182 0.2043329000, 0.2054236000, 0.2065117000, 0.2075972000, 0.2086801000,
1183 0.2097605000, 0.2108384000, 0.2119139000, 0.2129870000, 0.2140576000,
1184 0.2151259000, 0.2161919000, 0.2172555000, 0.2183169000, 0.2193761000,
1185 0.2204330000, 0.2214878000, 0.2225404000, 0.2235909000, 0.2246392000,
1186 0.2256855000, 0.2267297000, 0.2277719000, 0.2288121000, 0.2298503000,
1187 0.2308866000, 0.2319210000, 0.2329534000, 0.2339840000, 0.2350126000,
1188 0.2360395000, 0.2370646000, 0.2380878000, 0.2391093000, 0.2401291000,
1189 0.2411471000, 0.2421634000, 0.2431781000, 0.2441911000, 0.2452024000,
1190 0.2462122000, 0.2472203000, 0.2482269000, 0.2492319000, 0.2502354000,
1191 0.2512374000, 0.2522379000, 0.2532369000, 0.2542345000, 0.2552306000,
1192 0.2562253000, 0.2572187000, 0.2582106000, 0.2592012000, 0.2601905000,
1193 0.2611784000, 0.2621651000, 0.2631504000, 0.2641345000, 0.2651174000,
1194 0.2660991000, 0.2670795000, 0.2680587000, 0.2690368000, 0.2700137000,
1195 0.2709895000, 0.2719642000, 0.2729378000, 0.2739103000, 0.2748817000,
1196 0.2758521000, 0.2768215000, 0.2777898000, 0.2787572000, 0.2797235000,
1197 0.2806890000, 0.2816534000, 0.2826170000, 0.2835796000, 0.2845414000,
1198 0.2855022000, 0.2864623000, 0.2874214000, 0.2883798000, 0.2893373000,
1199 0.2902940000, 0.2912500000, 0.2922052000, 0.2931597000, 0.2941134000,
1200 0.2950664000, 0.2960187000, 0.2969704000, 0.2979213000, 0.2988716000,
1201 0.2998213000, 0.3007704000, 0.3017189000, 0.3026667000, 0.3036140000,
1202 0.3045608000, 0.3055070000, 0.3064527000, 0.3073978000, 0.3083425000,
1203 0.3092867000, 0.3102304000, 0.3111737000, 0.3121166000, 0.3130590000,
1204 0.3140010000, 0.3149426000, 0.3158839000, 0.3168248000, 0.3177653000,
1205 0.3187056000, 0.3196455000, 0.3205851000, 0.3215244000, 0.3224634000,
1206 0.3234022000, 0.3243408000, 0.3252791000, 0.3262172000, 0.3271551000,
1207 0.3280928000, 0.3290303000, 0.3299677000, 0.3309050000, 0.3318421000,
1208 0.3327791000, 0.3337160000, 0.3346528000, 0.3355896000, 0.3365263000,
1209 0.3374629000, 0.3383995000, 0.3393362000, 0.3402728000, 0.3412094000,
1210 0.3421460000, 0.3430827000, 0.3440194000, 0.3449562000, 0.3458931000,
1211 0.3468301000, 0.3477672000, 0.3487044000, 0.3496418000, 0.3505793000,
1212 0.3515170000, 0.3524548000, 0.3533929000, 0.3543311000, 0.3552696000,
1213 0.3562083000, 0.3571472000, 0.3580864000, 0.3590259000, 0.3599657000,
1214 0.3609057000, 0.3618461000, 0.3627868000, 0.3637279000, 0.3646693000,
1215 0.3656111000, 0.3665532000, 0.3674958000, 0.3684387000, 0.3693821000,
1216 0.3703259000, 0.3712701000, 0.3722149000, 0.3731600000, 0.3741057000,
1217 0.3750519000, 0.3759986000, 0.3769458000, 0.3778936000, 0.3788419000,
1218 0.3797908000, 0.3807402000, 0.3816903000, 0.3826409000, 0.3835922000,
1219 0.3845441000, 0.3854966000, 0.3864498000, 0.3874037000, 0.3883583000,
1220 0.3893135000, 0.3902695000, 0.3912262000, 0.3921836000, 0.3931418000,
1221 0.3941007000, 0.3950604000, 0.3960209000, 0.3969822000, 0.3979443000,
1222 0.3989072000, 0.3998710000, 0.4008356000, 0.4018011000, 0.4027675000,
1223 0.4037347000, 0.4047029000, 0.4056720000, 0.4066420000, 0.4076129000,
1224 0.4085848000, 0.4095576000, 0.4105315000, 0.4115063000, 0.4124821000,
1225 0.4134590000, 0.4144368000, 0.4154157000, 0.4163957000, 0.4173767000,
1226 0.4183588000, 0.4193420000, 0.4203264000, 0.4213118000, 0.4222983000,
1227 0.4232860000, 0.4242749000, 0.4252649000, 0.4262561000, 0.4272484000,
1228 0.4282420000, 0.4292368000, 0.4302328000, 0.4312301000, 0.4322286000,
1229 0.4332284000, 0.4342295000, 0.4352318000, 0.4362354000, 0.4372404000,
1230 0.4382467000, 0.4392543000, 0.4402633000, 0.4412736000, 0.4422853000,
1231 0.4432984000, 0.4443129000, 0.4453288000, 0.4463461000, 0.4473648000,
1232 0.4483850000, 0.4494067000, 0.4504298000, 0.4514544000, 0.4524804000,
1233 0.4535080000, 0.4545371000, 0.4555678000, 0.4565999000, 0.4576337000,
1234 0.4586689000, 0.4597058000, 0.4607442000, 0.4617843000, 0.4628259000,
1235 0.4638692000, 0.4649141000, 0.4659606000, 0.4670088000, 0.4680586000,
1236 0.4691101000, 0.4701633000, 0.4712183000, 0.4722749000, 0.4733332000,
1237 0.4743933000, 0.4754551000, 0.4765186000, 0.4775840000, 0.4786511000,
1238 0.4797199000, 0.4807906000, 0.4818631000, 0.4829374000, 0.4840135000,
1239 0.4850915000, 0.4861713000, 0.4872530000, 0.4883366000, 0.4894220000,
1240 0.4905093000, 0.4915985000, 0.4926897000, 0.4937827000, 0.4948777000,
1241 0.4959747000, 0.4970736000, 0.4981744000, 0.4992772000, 0.5003820000,
1242 0.5014888000, 0.5025976000, 0.5037085000, 0.5048213000, 0.5059362000,
1243 0.5070531000, 0.5081720000, 0.5092931000, 0.5104162000, 0.5115413000,
1244 0.5126686000, 0.5137980000, 0.5149294000, 0.5160630000, 0.5171987000,
1245 0.5183366000, 0.5194766000, 0.5206187000, 0.5217630000, 0.5229095000,
1246 0.5240581000, 0.5252090000, 0.5263620000, 0.5275173000, 0.5286748000,
1247 0.5298344000, 0.5309964000, 0.5321605000, 0.5333269000, 0.5344956000,
1248 0.5356665000, 0.5368397000, 0.5380152000, 0.5391930000, 0.5403731000,
1249 0.5415554000, 0.5427401000, 0.5439272000, 0.5451165000, 0.5463082000,
1250 0.5475022000, 0.5486986000, 0.5498973000, 0.5510984000, 0.5523019000,
1251 0.5535077000, 0.5547159000, 0.5559266000, 0.5571396000, 0.5583551000,
1252 0.5595729000, 0.5607932000, 0.5620159000, 0.5632411000, 0.5644686000,
1253 0.5656987000, 0.5669312000, 0.5681661000, 0.5694036000, 0.5706435000,
1254 0.5718859000, 0.5731307000, 0.5743781000, 0.5756280000, 0.5768804000,
1255 0.5781352000, 0.5793926000, 0.5806526000, 0.5819150000, 0.5831800000,
1256 0.5844476000, 0.5857176000, 0.5869903000, 0.5882655000, 0.5895432000,
1257 0.5908235000, 0.5921064000, 0.5933919000, 0.5946799000, 0.5959706000,
1258 0.5972638000, 0.5985596000, 0.5998581000, 0.6011591000, 0.6024627000,
1259 0.6037690000, 0.6050779000, 0.6063894000, 0.6077036000, 0.6090203000,
1260 0.6103397000, 0.6116618000, 0.6129865000, 0.6143139000, 0.6156439000,
1261 0.6169765000, 0.6183119000, 0.6196499000, 0.6209905000, 0.6223339000,
1262 0.6236799000, 0.6250286000, 0.6263800000, 0.6277340000, 0.6290908000,
1263 0.6304503000, 0.6318124000, 0.6331773000, 0.6345448000, 0.6359151000,
1264 0.6372881000, 0.6386638000, 0.6400422000, 0.6414233000, 0.6428071000,
1265 0.6441937000, 0.6455830000, 0.6469750000, 0.6483698000, 0.6497673000,
1266 0.6511675000, 0.6525705000, 0.6539762000, 0.6553846000, 0.6567958000,
1267 0.6582098000, 0.6596264000, 0.6610459000, 0.6624681000, 0.6638930000,
1268 0.6653208000, 0.6667512000, 0.6681845000, 0.6696205000, 0.6710592000,
1269 0.6725007000, 0.6739450000, 0.6753921000, 0.6768419000, 0.6782945000,
1270 0.6797499000, 0.6812080000, 0.6826690000, 0.6841327000, 0.6855992000,
1271 0.6870684000, 0.6885404000, 0.6900153000, 0.6914929000, 0.6929732000,
1272 0.6944564000, 0.6959423000, 0.6974311000, 0.6989226000, 0.7004169000,
1273 0.7019140000, 0.7034139000, 0.7049165000, 0.7064220000, 0.7079302000,
1274 0.7094412000, 0.7109550000, 0.7124716000, 0.7139910000, 0.7155132000,
1275 0.7170382000, 0.7185659000, 0.7200965000, 0.7216298000, 0.7231660000,
1276 0.7247049000, 0.7262466000, 0.7277911000, 0.7293383000, 0.7308884000,
1277 0.7324413000, 0.7339969000, 0.7355553000, 0.7371166000, 0.7386806000,
1278 0.7402474000, 0.7418169000, 0.7433893000, 0.7449644000, 0.7465424000,
1279 0.7481231000, 0.7497066000, 0.7512929000, 0.7528819000, 0.7544737000,
1280 0.7560684000, 0.7576657000, 0.7592659000, 0.7608689000, 0.7624746000,
1281 0.7640831000, 0.7656943000, 0.7673084000, 0.7689252000, 0.7705448000,
1282 0.7721671000, 0.7737922000, 0.7754201000, 0.7770507000, 0.7786841000,
1283 0.7803203000, 0.7819592000, 0.7836009000, 0.7852454000, 0.7868926000,
1284 0.7885425000, 0.7901952000, 0.7918507000, 0.7935089000, 0.7951698000,
1285 0.7968335000, 0.7985000000, 0.8001692000, 0.8018411000, 0.8035158000,
1286 0.8051932000, 0.8068733000, 0.8085562000, 0.8102418000, 0.8119301000,
1287 0.8136212000, 0.8153150000, 0.8170115000, 0.8187108000, 0.8204127000,
1288 0.8221174000, 0.8238248000, 0.8255349000, 0.8272477000, 0.8289633000,
1289 0.8306815000, 0.8324025000, 0.8341261000, 0.8358525000, 0.8375815000,
1290 0.8393133000, 0.8410477000, 0.8427849000, 0.8445247000, 0.8462672000,
1291 0.8480124000, 0.8497603000, 0.8515108000, 0.8532641000, 0.8550200000,
1292 0.8567786000, 0.8585399000, 0.8603038000, 0.8620704000, 0.8638396000,
1293 0.8656116000, 0.8673861000, 0.8691634000, 0.8709433000, 0.8727258000,
1294 0.8745110000, 0.8762988000, 0.8780893000, 0.8798824000, 0.8816782000,
1295 0.8834766000, 0.8852776000, 0.8870812000, 0.8888875000, 0.8906964000,
1296 0.8925079000, 0.8943221000, 0.8961388000, 0.8979582000, 0.8997801000,
1297 0.9016047000, 0.9034319000, 0.9052617000, 0.9070941000, 0.9089291000,
1298 0.9107666000, 0.9126068000, 0.9144495000, 0.9162949000, 0.9181428000,
1299 0.9199933000, 0.9218463000, 0.9237020000, 0.9255602000, 0.9274210000,
1300 0.9292843000, 0.9311502000, 0.9330186000, 0.9348896000, 0.9367632000,
1301 0.9386393000, 0.9405179000, 0.9423991000, 0.9442828000, 0.9461691000,
1302 0.9480579000, 0.9499492000, 0.9518431000, 0.9537394000, 0.9556383000,
1303 0.9575397000, 0.9594436000, 0.9613501000, 0.9632590000, 0.9651704000,
1304 0.9670844000, 0.9690008000, 0.9709197000, 0.9728411000, 0.9747650000,
1305 0.9766914000, 0.9786203000, 0.9805516000, 0.9824854000, 0.9844217000,
1306 0.9863605000, 0.9883017000, 0.9902454000, 0.9921915000, 0.9941401000,
1307 0.9960911000, 0.9980446000, 1.0000010000, 1.0019590000, 1.0039200000,
1308 1.0058830000, 1.0078490000, 1.0098170000, 1.0117870000, 1.0137600000,
1309 1.0157360000, 1.0177130000, 1.0196940000, 1.0216760000, 1.0236610000,
1310 1.0256490000, 1.0276380000, 1.0296310000, 1.0316250000, 1.0336220000,
1311 1.0356210000, 1.0376230000, 1.0396270000, 1.0416340000, 1.0436430000,
1312 1.0456540000, 1.0476670000, 1.0496830000, 1.0517020000, 1.0537220000,
1313 1.0557450000, 1.0577710000, 1.0597980000, 1.0618280000, 1.0638610000,
1314 1.0658950000, 1.0679320000, 1.0699720000, 1.0720130000, 1.0740570000,
1315 1.0761040000, 1.0781520000, 1.0802030000, 1.0822560000, 1.0843120000,
1316 1.0863690000, 1.0884300000, 1.0904920000, 1.0925570000, 1.0946240000,
1317 1.0966930000, 1.0987640000, 1.1008380000, 1.1029140000, 1.1049920000,
1318 1.1070730000, 1.1091560000, 1.1112410000, 1.1133280000, 1.1154180000,
1319 1.1175090000, 1.1196030000, 1.1217000000, 1.1237980000, 1.1258990000,
1320 1.1280020000, 1.1301070000, 1.1322140000, 1.1343240000, 1.1364360000,
1321 1.1385500000, 1.1406660000, 1.1427850000, 1.1449050000, 1.1470280000,
1322 1.1491530000, 1.1512800000, 1.1534100000, 1.1555410000, 1.1576750000,
1323 1.1598110000, 1.1619490000, 1.1640890000, 1.1662310000, 1.1683760000,
1324 1.1705230000, 1.1726710000, 1.1748220000, 1.1769750000, 1.1791310000,
1325 1.1812880000, 1.1834480000, 1.1856090000, 1.1877730000, 1.1899390000,
1326 1.1921070000, 1.1942770000, 1.1964490000, 1.1986240000, 1.2008000000,
1327 1.2029780000, 1.2051590000, 1.2073420000, 1.2095270000, 1.2117130000,
1328 1.2139020000, 1.2160930000, 1.2182860000, 1.2204820000, 1.2226790000,
1329 1.2248780000, 1.2270790000, 1.2292830000, 1.2314880000, 1.2336960000,
1330 1.2359050000, 1.2381170000, 1.2403300000, 1.2425460000, 1.2447640000,
1331 1.2469830000, 1.2492050000, 1.2514290000, 1.2536540000, 1.2558820000,
1332 1.2581120000, 1.2603430000, 1.2625770000, 1.2648130000, 1.2670510000,
1333 1.2692900000, 1.2715320000, 1.2737760000, 1.2760210000, 1.2782690000,
1334 1.2805180000, 1.2827700000, 1.2850230000, 1.2872790000, 1.2895360000,
1335 1.2917950000, 1.2940560000, 1.2963200000, 1.2985850000, 1.3008520000,
1336 1.3031210000, 1.3053920000, 1.3076650000, 1.3099390000, 1.3122160000,
1337 1.3144940000, 1.3167750000, 1.3190570000, 1.3213420000, 1.3236280000,
1338 1.3259160000, 1.3282060000, 1.3304970000, 1.3327910000, 1.3350870000,
1339 1.3373840000, 1.3396830000, 1.3419850000, 1.3442880000, 1.3465920000,
1340 1.3488990000, 1.3512080000, 1.3535180000, 1.3558300000, 1.3581440000,
1341 1.3604600000, 1.3627780000, 1.3650970000, 1.3674190000, 1.3697420000,
1342 1.3720670000, 1.3743940000, 1.3767220000, 1.3790530000, 1.3813850000,
1343 1.3837190000, 1.3860540000, 1.3883920000, 1.3907310000, 1.3930720000,
1344 1.3954150000, 1.3977600000, 1.4001060000, 1.4024540000, 1.4048040000,
1345 1.4071560000, 1.4095090000, 1.4118640000, 1.4142210000, 1.4165800000,
1346 1.4189400000, 1.4213020000, 1.4236660000, 1.4260310000, 1.4283990000,
1347 1.4307670000, 1.4331380000, 1.4355100000, 1.4378840000, 1.4402600000,
1348 1.4426370000, 1.4450160000, 1.4473970000, 1.4497800000, 1.4521640000,
1349 1.4545490000, 1.4569370000, 1.4593260000, 1.4617170000, 1.4641090000,
1350 1.4665030000, 1.4688990000, 1.4712960000, 1.4736950000, 1.4760960000,
1351 1.4784980000, 1.4809020000, 1.4833070000, 1.4857140000, 1.4881230000,
1352 1.4905330000, 1.4929450000, 1.4953580000, 1.4977730000, 1.5001900000,
1353 1.5026080000, 1.5050280000, 1.5074490000, 1.5098720000, 1.5122970000,
1354 1.5147230000, 1.5171500000, 1.5195790000, 1.5220100000, 1.5244420000,
1355 1.5268760000, 1.5293110000, 1.5317480000, 1.5341870000, 1.5366270000,
1356 1.5390680000, 1.5415110000, 1.5439550000, 1.5464010000, 1.5488490000,
1357 1.5512980000, 1.5537480000, 1.5562000000, 1.5586530000, 1.5611080000,
1358 1.5635650000, 1.5660230000, 1.5684820000, 1.5709430000, 1.5734050000,
1359 1.5758680000, 1.5783340000, 1.5808000000, 1.5832680000, 1.5857380000,
1360 1.5882080000, 1.5906810000, 1.5931540000, 1.5956290000, 1.5981060000,
1361 1.6005840000, 1.6030630000, 1.6055440000, 1.6080260000, 1.6105100000,
1362 1.6129950000, 1.6154810000, 1.6179680000, 1.6204570000, 1.6229480000,
1363 1.6254400000, 1.6279330000, 1.6304270000, 1.6329230000, 1.6354200000,
1364 1.6379190000, 1.6404190000, 1.6429200000, 1.6454220000, 1.6479260000,
1365 1.6504310000, 1.6529380000, 1.6554450000, 1.6579540000, 1.6604650000,
1366 1.6629760000, 1.6654890000, 1.6680040000, 1.6705190000, 1.6730360000,
1367 1.6755540000, 1.6780730000, 1.6805940000, 1.6831160000, 1.6856390000,
1368 1.6881630000, 1.6906890000, 1.6932160000, 1.6957440000, 1.6982730000,
1369 1.7008030000, 1.7033350000, 1.7058680000, 1.7084020000, 1.7109380000,
1370 1.7134740000, 1.7160120000, 1.7185510000, 1.7210910000, 1.7236330000,
1371 1.7261750000, 1.7287190000, 1.7312640000, 1.7338100000, 1.7363570000,
1372 1.7389050000, 1.7414550000, 1.7440050000, 1.7465570000, 1.7491100000,
1373 1.7516640000, 1.7542190000, 1.7567760000, 1.7593330000, 1.7618920000,
1374 1.7644520000, 1.7670120000, 1.7695740000, 1.7721370000, 1.7747010000,
1375 1.7772660000, 1.7798330000, 1.7824000000, 1.7849680000, 1.7875380000,
1376 1.7901080000, 1.7926800000, 1.7952530000, 1.7978260000, 1.8004010000,
1377 1.8029770000, 1.8055540000, 1.8081320000, 1.8107100000, 1.8132900000,
1378 1.8158710000, 1.8184530000, 1.8210360000, 1.8236200000, 1.8262050000,
1379 1.8287910000, 1.8313780000, 1.8339660000, 1.8365550000, 1.8391450000,
1380 1.8417360000, 1.8443270000, 1.8469200000, 1.8495140000, 1.8521090000,
1381 1.8547040000, 1.8573010000, 1.8598980000, 1.8624970000, 1.8650960000,
1382 1.8676970000, 1.8702980000, 1.8729000000, 1.8755030000, 1.8781070000,
1383 1.8807120000, 1.8833180000, 1.8859250000, 1.8885320000, 1.8911410000,
1384 1.8937500000, 1.8963600000, 1.8989710000, 1.9015830000, 1.9041960000,
1385 1.9068100000, 1.9094240000, 1.9120400000, 1.9146560000, 1.9172730000,
1386 1.9198910000, 1.9225100000, 1.9251290000, 1.9277500000, 1.9303710000,
1387 1.9329930000, 1.9356160000, 1.9382400000, 1.9408640000, 1.9434890000,
1388 1.9461150000, 1.9487420000, 1.9513700000, 1.9539980000, 1.9566270000,
1389 1.9592570000, 1.9618880000, 1.9645190000, 1.9671520000, 1.9697850000,
1390 1.9724180000, 1.9750530000, 1.9776880000, 1.9803240000, 1.9829610000,
1391 1.9855980000, 1.9882360000, 1.9908750000, 1.9935140000, 1.9961550000,
1392 1.9987960000, 2.0014370000, 2.0040800000, 2.0067230000, 2.0093660000,
1393 2.0120110000, 2.0146560000, 2.0173010000, 2.0199480000, 2.0225950000,
1394 2.0252430000, 2.0278910000, 2.0305400000, 2.0331900000, 2.0358400000,
1395 2.0384910000, 2.0411430000, 2.0437950000, 2.0464480000, 2.0491010000,
1396 2.0517550000, 2.0544100000, 2.0570650000, 2.0597210000, 2.0623780000,
1397 2.0650350000, 2.0676930000, 2.0703510000, 2.0730100000, 2.0756690000,
1398 2.0783290000, 2.0809900000, 2.0836510000, 2.0863130000, 2.0889750000,
1399 2.0916380000, 2.0943010000, 2.0969650000, 2.0996290000, 2.1022940000,
1400 2.1049600000, 2.1076260000, 2.1102930000, 2.1129600000, 2.1156270000,
1401 2.1182950000, 2.1209640000, 2.1236330000, 2.1263030000, 2.1289730000,
1402 2.1316440000, 2.1343150000, 2.1369860000, 2.1396580000, 2.1423310000,
1403 2.1450040000, 2.1476780000, 2.1503510000, 2.1530260000, 2.1557010000
1404 };
1405 double K1400_width[2000]={//1700 bin, s = (0.6, 4)
1406 0.0000000007, 0.0000000025, 0.0000000061, 0.0000000121, 0.0000000213,
1407 0.0000000344, 0.0000000519, 0.0000000747, 0.0000001034, 0.0000001389,
1408 0.0000001818, 0.0000002329, 0.0000002930, 0.0000003630, 0.0000004435,
1409 0.0000005356, 0.0000006400, 0.0000007576, 0.0000008892, 0.0000010359,
1410 0.0000011985, 0.0000013780, 0.0000015753, 0.0000017914, 0.0000020274,
1411 0.0000022842, 0.0000025629, 0.0000028646, 0.0000031903, 0.0000035413,
1412 0.0000039185, 0.0000043232, 0.0000047566, 0.0000052199, 0.0000057143,
1413 0.0000062411, 0.0000068015, 0.0000073970, 0.0000080288, 0.0000086983,
1414 0.0000094069, 0.0000101561, 0.0000109474, 0.0000117821, 0.0000126619,
1415 0.0000135884, 0.0000145631, 0.0000155876, 0.0000166637, 0.0000177930,
1416 0.0000189773, 0.0000202184, 0.0000215182, 0.0000228784, 0.0000243010,
1417 0.0000257879, 0.0000273412, 0.0000289629, 0.0000306551, 0.0000324199,
1418 0.0000342596, 0.0000361763, 0.0000381724, 0.0000402502, 0.0000424121,
1419 0.0000446606, 0.0000469982, 0.0000494275, 0.0000519511, 0.0000545718,
1420 0.0000572923, 0.0000601155, 0.0000630443, 0.0000660816, 0.0000692306,
1421 0.0000724943, 0.0000758761, 0.0000793791, 0.0000830068, 0.0000867626,
1422 0.0000906501, 0.0000946730, 0.0000988349, 0.0001031398, 0.0001075916,
1423 0.0001121943, 0.0001169520, 0.0001218691, 0.0001269499, 0.0001321989,
1424 0.0001376208, 0.0001432202, 0.0001490021, 0.0001549715, 0.0001611335,
1425 0.0001674933, 0.0001740566, 0.0001808287, 0.0001878156, 0.0001950231,
1426 0.0002024573, 0.0002101244, 0.0002180310, 0.0002261837, 0.0002345892,
1427 0.0002432546, 0.0002521872, 0.0002613945, 0.0002708840, 0.0002806638,
1428 0.0002907420, 0.0003011271, 0.0003118276, 0.0003228526, 0.0003342113,
1429 0.0003459132, 0.0003579682, 0.0003703863, 0.0003831781, 0.0003963544,
1430 0.0004099263, 0.0004239055, 0.0004383037, 0.0004531333, 0.0004684072,
1431 0.0004841383, 0.0005003405, 0.0005170277, 0.0005342145, 0.0005519161,
1432 0.0005701480, 0.0005889265, 0.0006082683, 0.0006281907, 0.0006487119,
1433 0.0006698504, 0.0006916256, 0.0007140575, 0.0007371670, 0.0007609758,
1434 0.0007855062, 0.0008107815, 0.0008368260, 0.0008636648, 0.0008913240,
1435 0.0009198309, 0.0009492137, 0.0009795018, 0.0010107260, 0.0010429180,
1436 0.0010761110, 0.0011103390, 0.0011456390, 0.0011820480, 0.0012196060,
1437 0.0012583530, 0.0012983320, 0.0013395870, 0.0013821650, 0.0014261150,
1438 0.0014714870, 0.0015183340, 0.0015667120, 0.0016166800, 0.0016682970,
1439 0.0017216280, 0.0017767390, 0.0018337000, 0.0018925850, 0.0019534700,
1440 0.0020164360, 0.0020815670, 0.0021489530, 0.0022186860, 0.0022908640,
1441 0.0023655910, 0.0024429750, 0.0025231290, 0.0026061740, 0.0026922350,
1442 0.0027814460, 0.0028739440, 0.0029698790, 0.0030694050, 0.0031726840,
1443 0.0032798900, 0.0033912030, 0.0035068140, 0.0036269240, 0.0037517470,
1444 0.0038815040, 0.0040164320, 0.0041567790, 0.0043028050, 0.0044547850,
1445 0.0046130090, 0.0047777790, 0.0049494150, 0.0051282500, 0.0053146360,
1446 0.0055089370, 0.0057115350, 0.0059228300, 0.0061432340, 0.0063731760,
1447 0.0066130990, 0.0068634590, 0.0071247200, 0.0073973600, 0.0076818580,
1448 0.0079786990, 0.0082883670, 0.0086113370, 0.0089480750, 0.0092990290,
1449 0.0096646210, 0.0100452400, 0.0104412500, 0.0108529300, 0.0112805500,
1450 0.0117242700, 0.0121842100, 0.0126603900, 0.0131527500, 0.0136611300,
1451 0.0141852900, 0.0147248800, 0.0152794700, 0.0158485100, 0.0164314100,
1452 0.0170274700, 0.0176359300, 0.0182559700, 0.0188867400, 0.0195273500,
1453 0.0201768900, 0.0208344400, 0.0214991000, 0.0221699600, 0.0228461600,
1454 0.0235268400, 0.0242112100, 0.0248985100, 0.0255880100, 0.0262790500,
1455 0.0269710000, 0.0276632900, 0.0283554000, 0.0290468400, 0.0297371800,
1456 0.0304260300, 0.0311130400, 0.0317978800, 0.0324802900, 0.0331600000,
1457 0.0338368100, 0.0345105300, 0.0351809800, 0.0358480300, 0.0365115500,
1458 0.0371714500, 0.0378276300, 0.0384800200, 0.0391285600, 0.0397732200,
1459 0.0404139500, 0.0410507400, 0.0416835500, 0.0423124000, 0.0429372700,
1460 0.0435581700, 0.0441751100, 0.0447881100, 0.0453971800, 0.0460023400,
1461 0.0466036300, 0.0472010600, 0.0477946700, 0.0483845000, 0.0489705600,
1462 0.0495529100, 0.0501315800, 0.0507066000, 0.0512780200, 0.0518458700,
1463 0.0524101800, 0.0529710200, 0.0535284000, 0.0540823700, 0.0546329800,
1464 0.0551802500, 0.0557242400, 0.0562649800, 0.0568025200, 0.0573368800,
1465 0.0578681100, 0.0583962500, 0.0589213300, 0.0594434000, 0.0599624900,
1466 0.0604786400, 0.0609918800, 0.0615022500, 0.0620097800, 0.0625145200,
1467 0.0630164900, 0.0635157300, 0.0640122700, 0.0645061500, 0.0649973900,
1468 0.0654860300, 0.0659721100, 0.0664556400, 0.0669366600, 0.0674152100,
1469 0.0678913000, 0.0683649800, 0.0688362600, 0.0693051800, 0.0697717600,
1470 0.0702360300, 0.0706980200, 0.0711577500, 0.0716152500, 0.0720705400,
1471 0.0725236500, 0.0729746100, 0.0734234300, 0.0738701400, 0.0743147600,
1472 0.0747573300, 0.0751978500, 0.0756363500, 0.0760728500, 0.0765073800,
1473 0.0769399600, 0.0773706000, 0.0777993300, 0.0782261600, 0.0786511200,
1474 0.0790742300, 0.0794955000, 0.0799149600, 0.0803326100, 0.0807484900,
1475 0.0811626100, 0.0815749800, 0.0819856300, 0.0823945700, 0.0828018200,
1476 0.0832073900, 0.0836113000, 0.0840135700, 0.0844142200, 0.0848132500,
1477 0.0852106900, 0.0856065500, 0.0860008400, 0.0863935900, 0.0867848000,
1478 0.0871744900, 0.0875626700, 0.0879493600, 0.0883345700, 0.0887183200,
1479 0.0891006200, 0.0894814800, 0.0898609100, 0.0902389300, 0.0906155600,
1480 0.0909908000, 0.0913646700, 0.0917371700, 0.0921083300, 0.0924781500,
1481 0.0928466500, 0.0932138400, 0.0935797200, 0.0939443200, 0.0943076400,
1482 0.0946696900, 0.0950304800, 0.0953900400, 0.0957483600, 0.0961054500,
1483 0.0964613400, 0.0968160300, 0.0971695200, 0.0975218300, 0.0978729800,
1484 0.0982229600, 0.0985718000, 0.0989194900, 0.0992660600, 0.0996115100,
1485 0.0999558400, 0.1002991000, 0.1006412000, 0.1009823000, 0.1013223000,
1486 0.1016612000, 0.1019991000, 0.1023359000, 0.1026717000, 0.1030064000,
1487 0.1033402000, 0.1036729000, 0.1040047000, 0.1043354000, 0.1046652000,
1488 0.1049939000, 0.1053218000, 0.1056486000, 0.1059745000, 0.1062995000,
1489 0.1066235000, 0.1069466000, 0.1072688000, 0.1075901000, 0.1079104000,
1490 0.1082299000, 0.1085485000, 0.1088662000, 0.1091831000, 0.1094990000,
1491 0.1098142000, 0.1101284000, 0.1104418000, 0.1107544000, 0.1110662000,
1492 0.1113771000, 0.1116873000, 0.1119966000, 0.1123051000, 0.1126128000,
1493 0.1129198000, 0.1132259000, 0.1135313000, 0.1138360000, 0.1141398000,
1494 0.1144429000, 0.1147453000, 0.1150469000, 0.1153478000, 0.1156480000,
1495 0.1159474000, 0.1162461000, 0.1165442000, 0.1168415000, 0.1171381000,
1496 0.1174340000, 0.1177292000, 0.1180238000, 0.1183177000, 0.1186109000,
1497 0.1189034000, 0.1191953000, 0.1194865000, 0.1197771000, 0.1200670000,
1498 0.1203563000, 0.1206449000, 0.1209329000, 0.1212203000, 0.1215071000,
1499 0.1217933000, 0.1220788000, 0.1223637000, 0.1226480000, 0.1229318000,
1500 0.1232149000, 0.1234974000, 0.1237794000, 0.1240607000, 0.1243415000,
1501 0.1246217000, 0.1249013000, 0.1251803000, 0.1254588000, 0.1257367000,
1502 0.1260140000, 0.1262908000, 0.1265670000, 0.1268427000, 0.1271178000,
1503 0.1273923000, 0.1276663000, 0.1279398000, 0.1282127000, 0.1284850000,
1504 0.1287568000, 0.1290281000, 0.1292988000, 0.1295690000, 0.1298387000,
1505 0.1301078000, 0.1303764000, 0.1306445000, 0.1309120000, 0.1311790000,
1506 0.1314455000, 0.1317114000, 0.1319768000, 0.1322417000, 0.1325060000,
1507 0.1327699000, 0.1330332000, 0.1332960000, 0.1335582000, 0.1338199000,
1508 0.1340812000, 0.1343418000, 0.1346020000, 0.1348617000, 0.1351208000,
1509 0.1355387000, 0.1358629000, 0.1361711000, 0.1364708000, 0.1367648000,
1510 0.1370546000, 0.1373411000, 0.1376249000, 0.1379063000, 0.1381858000,
1511 0.1384634000, 0.1387394000, 0.1390139000, 0.1392870000, 0.1395588000,
1512 0.1398294000, 0.1400988000, 0.1403671000, 0.1406344000, 0.1409007000,
1513 0.1411659000, 0.1414302000, 0.1416936000, 0.1419562000, 0.1422178000,
1514 0.1424786000, 0.1427386000, 0.1429977000, 0.1432561000, 0.1435136000,
1515 0.1437704000, 0.1440265000, 0.1442818000, 0.1445364000, 0.1447902000,
1516 0.1450434000, 0.1452958000, 0.1455475000, 0.1457986000, 0.1460490000,
1517 0.1462986000, 0.1465477000, 0.1467960000, 0.1470437000, 0.1472908000,
1518 0.1475372000, 0.1477830000, 0.1480281000, 0.1482726000, 0.1485165000,
1519 0.1487597000, 0.1490024000, 0.1492444000, 0.1494858000, 0.1497266000,
1520 0.1499668000, 0.1502065000, 0.1504455000, 0.1506839000, 0.1509218000,
1521 0.1511590000, 0.1513957000, 0.1516318000, 0.1518674000, 0.1521023000,
1522 0.1523367000, 0.1525706000, 0.1528038000, 0.1530366000, 0.1532687000,
1523 0.1535003000, 0.1537314000, 0.1539619000, 0.1541918000, 0.1544213000,
1524 0.1546501000, 0.1548785000, 0.1551063000, 0.1553336000, 0.1555603000,
1525 0.1557866000, 0.1560122000, 0.1562374000, 0.1564621000, 0.1566862000,
1526 0.1569098000, 0.1571329000, 0.1573555000, 0.1575776000, 0.1577992000,
1527 0.1580203000, 0.1582409000, 0.1584609000, 0.1586805000, 0.1588996000,
1528 0.1591182000, 0.1593363000, 0.1595539000, 0.1597710000, 0.1599876000,
1529 0.1602038000, 0.1604194000, 0.1606346000, 0.1608493000, 0.1610636000,
1530 0.1612773000, 0.1614906000, 0.1617035000, 0.1619158000, 0.1621277000,
1531 0.1623391000, 0.1625501000, 0.1627606000, 0.1629706000, 0.1631802000,
1532 0.1633894000, 0.1635981000, 0.1638063000, 0.1640141000, 0.1642214000,
1533 0.1644283000, 0.1646347000, 0.1648407000, 0.1650463000, 0.1652514000,
1534 0.1654561000, 0.1656604000, 0.1658642000, 0.1660676000, 0.1662706000,
1535 0.1664731000, 0.1666752000, 0.1668769000, 0.1670782000, 0.1672790000,
1536 0.1674794000, 0.1676794000, 0.1678790000, 0.1680782000, 0.1682769000,
1537 0.1684753000, 0.1686732000, 0.1688707000, 0.1690679000, 0.1692646000,
1538 0.1694609000, 0.1696568000, 0.1698523000, 0.1700474000, 0.1702421000,
1539 0.1704364000, 0.1706304000, 0.1708239000, 0.1710170000, 0.1712098000,
1540 0.1714022000, 0.1715941000, 0.1717857000, 0.1719769000, 0.1721677000,
1541 0.1723582000, 0.1725482000, 0.1727379000, 0.1729272000, 0.1731162000,
1542 0.1733047000, 0.1734929000, 0.1736807000, 0.1738682000, 0.1740552000,
1543 0.1742420000, 0.1744283000, 0.1746143000, 0.1747999000, 0.1749851000,
1544 0.1751700000, 0.1753546000, 0.1755388000, 0.1757226000, 0.1759060000,
1545 0.1760892000, 0.1762719000, 0.1764543000, 0.1766364000, 0.1768181000,
1546 0.1769995000, 0.1771805000, 0.1773612000, 0.1775415000, 0.1777215000,
1547 0.1779011000, 0.1780804000, 0.1782594000, 0.1784380000, 0.1786163000,
1548 0.1787943000, 0.1789719000, 0.1791492000, 0.1793262000, 0.1795028000,
1549 0.1796791000, 0.1798551000, 0.1800308000, 0.1802061000, 0.1803811000,
1550 0.1805558000, 0.1807301000, 0.1809042000, 0.1810779000, 0.1812513000,
1551 0.1814244000, 0.1815971000, 0.1817696000, 0.1819417000, 0.1821136000,
1552 0.1822851000, 0.1824563000, 0.1826272000, 0.1827978000, 0.1829681000,
1553 0.1831380000, 0.1833077000, 0.1834771000, 0.1836461000, 0.1838149000,
1554 0.1839834000, 0.1841515000, 0.1843194000, 0.1844869000, 0.1846542000,
1555 0.1848212000, 0.1849879000, 0.1851543000, 0.1853203000, 0.1854862000,
1556 0.1856517000, 0.1858169000, 0.1859818000, 0.1861465000, 0.1863108000,
1557 0.1864749000, 0.1866387000, 0.1868022000, 0.1869654000, 0.1871284000,
1558 0.1872910000, 0.1874534000, 0.1876155000, 0.1877774000, 0.1879389000,
1559 0.1881002000, 0.1882612000, 0.1884219000, 0.1885824000, 0.1887426000,
1560 0.1889025000, 0.1890621000, 0.1892215000, 0.1893806000, 0.1895395000,
1561 0.1896980000, 0.1898563000, 0.1900144000, 0.1901722000, 0.1903297000,
1562 0.1904869000, 0.1906439000, 0.1908007000, 0.1909571000, 0.1911133000,
1563 0.1912693000, 0.1914250000, 0.1915805000, 0.1917357000, 0.1918906000,
1564 0.1920453000, 0.1921997000, 0.1923539000, 0.1925078000, 0.1926615000,
1565 0.1928149000, 0.1929681000, 0.1931211000, 0.1932738000, 0.1934262000,
1566 0.1935784000, 0.1937304000, 0.1938821000, 0.1940336000, 0.1941848000,
1567 0.1943358000, 0.1944865000, 0.1946370000, 0.1947873000, 0.1949374000,
1568 0.1950872000, 0.1952367000, 0.1953860000, 0.1955351000, 0.1956840000,
1569 0.1958326000, 0.1959810000, 0.1961292000, 0.1962771000, 0.1964248000,
1570 0.1965723000, 0.1967196000, 0.1968666000, 0.1970134000, 0.1971600000,
1571 0.1973063000, 0.1974524000, 0.1975983000, 0.1977440000, 0.1978894000,
1572 0.1980347000, 0.1981797000, 0.1983245000, 0.1984690000, 0.1986134000,
1573 0.1987575000, 0.1989015000, 0.1990452000, 0.1991886000, 0.1993319000,
1574 0.1994750000, 0.1996178000, 0.1997604000, 0.1999029000, 0.2000451000,
1575 0.2001871000, 0.2003289000, 0.2004704000, 0.2006118000, 0.2007530000,
1576 0.2008939000, 0.2010347000, 0.2011752000, 0.2013156000, 0.2014557000,
1577 0.2015956000, 0.2017353000, 0.2018749000, 0.2020142000, 0.2021533000,
1578 0.2022922000, 0.2024310000, 0.2025695000, 0.2027078000, 0.2028459000,
1579 0.2029839000, 0.2031216000, 0.2032591000, 0.2033965000, 0.2035336000,
1580 0.2036706000, 0.2038073000, 0.2039439000, 0.2040803000, 0.2042165000,
1581 0.2043524000, 0.2044883000, 0.2046239000, 0.2047593000, 0.2048945000,
1582 0.2050296000, 0.2051644000, 0.2052991000, 0.2054336000, 0.2055679000,
1583 0.2057020000, 0.2058360000, 0.2059697000, 0.2061033000, 0.2062367000,
1584 0.2063699000, 0.2065029000, 0.2066358000, 0.2067684000, 0.2069009000,
1585 0.2070332000, 0.2071653000, 0.2072973000, 0.2074291000, 0.2075607000,
1586 0.2076921000, 0.2078233000, 0.2079544000, 0.2080853000, 0.2082161000,
1587 0.2083466000, 0.2084770000, 0.2086072000, 0.2087372000, 0.2088671000,
1588 0.2089968000, 0.2091263000, 0.2092557000, 0.2093849000, 0.2095139000,
1589 0.2096428000, 0.2097715000, 0.2099000000, 0.2100284000, 0.2101566000,
1590 0.2102846000, 0.2104125000, 0.2105402000, 0.2106677000, 0.2107951000,
1591 0.2109223000, 0.2110494000, 0.2111763000, 0.2113030000, 0.2114296000,
1592 0.2115560000, 0.2116823000, 0.2118084000, 0.2119343000, 0.2120601000,
1593 0.2121858000, 0.2123112000, 0.2124366000, 0.2125617000, 0.2126868000,
1594 0.2128116000, 0.2129363000, 0.2130609000, 0.2131853000, 0.2133095000,
1595 0.2134337000, 0.2135576000, 0.2136814000, 0.2138051000, 0.2139286000,
1596 0.2140519000, 0.2141751000, 0.2142982000, 0.2144211000, 0.2145439000,
1597 0.2146665000, 0.2147890000, 0.2149113000, 0.2150335000, 0.2151555000,
1598 0.2152774000, 0.2153992000, 0.2155208000, 0.2156423000, 0.2157636000,
1599 0.2158848000, 0.2160059000, 0.2161268000, 0.2162475000, 0.2163682000,
1600 0.2164887000, 0.2166090000, 0.2167292000, 0.2168493000, 0.2169693000,
1601 0.2170891000, 0.2172088000, 0.2173283000, 0.2174477000, 0.2175670000,
1602 0.2176861000, 0.2178051000, 0.2179240000, 0.2180427000, 0.2181613000,
1603 0.2182798000, 0.2183982000, 0.2185164000, 0.2186345000, 0.2187524000,
1604 0.2188703000, 0.2189880000, 0.2191055000, 0.2192230000, 0.2193403000,
1605 0.2194575000, 0.2195745000, 0.2196915000, 0.2198083000, 0.2199250000,
1606 0.2200416000, 0.2201580000, 0.2202743000, 0.2203905000, 0.2205066000,
1607 0.2206225000, 0.2207384000, 0.2208541000, 0.2209697000, 0.2210851000,
1608 0.2212005000, 0.2213157000, 0.2214308000, 0.2215458000, 0.2216607000,
1609 0.2217754000, 0.2218901000, 0.2220046000, 0.2221190000, 0.2222333000,
1610 0.2223475000, 0.2224615000, 0.2225755000, 0.2226893000, 0.2228030000,
1611 0.2229166000, 0.2230301000, 0.2231435000, 0.2232568000, 0.2233699000,
1612 0.2234830000, 0.2235959000, 0.2237088000, 0.2238215000, 0.2239341000,
1613 0.2240466000, 0.2241590000, 0.2242713000, 0.2243834000, 0.2244955000,
1614 0.2246075000, 0.2247193000, 0.2248311000, 0.2249427000, 0.2250543000,
1615 0.2251657000, 0.2252770000, 0.2253883000, 0.2254994000, 0.2256104000,
1616 0.2257213000, 0.2258321000, 0.2259429000, 0.2260535000, 0.2261640000,
1617 0.2262744000, 0.2263847000, 0.2264949000, 0.2266050000, 0.2267151000,
1618 0.2268250000, 0.2269348000, 0.2270445000, 0.2271542000, 0.2272637000,
1619 0.2273731000, 0.2274825000, 0.2275917000, 0.2277009000, 0.2278099000,
1620 0.2279189000, 0.2280277000, 0.2281365000, 0.2282452000, 0.2283538000,
1621 0.2284623000, 0.2285707000, 0.2286790000, 0.2287872000, 0.2288954000,
1622 0.2290034000, 0.2291114000, 0.2292192000, 0.2293270000, 0.2294347000,
1623 0.2295423000, 0.2296498000, 0.2297572000, 0.2298646000, 0.2299718000,
1624 0.2300790000, 0.2301861000, 0.2302931000, 0.2304000000, 0.2305068000,
1625 0.2306136000, 0.2307202000, 0.2308268000, 0.2309333000, 0.2310397000,
1626 0.2311460000, 0.2312523000, 0.2313584000, 0.2314645000, 0.2315705000,
1627 0.2316765000, 0.2317823000, 0.2318881000, 0.2319938000, 0.2320994000,
1628 0.2322049000, 0.2323104000, 0.2324157000, 0.2325210000, 0.2326263000,
1629 0.2327314000, 0.2328365000, 0.2329415000, 0.2330464000, 0.2331513000,
1630 0.2332560000, 0.2333607000, 0.2334654000, 0.2335699000, 0.2336744000,
1631 0.2337788000, 0.2338831000, 0.2339874000, 0.2340916000, 0.2341957000,
1632 0.2342998000, 0.2344038000, 0.2345077000, 0.2346115000, 0.2347153000,
1633 0.2348190000, 0.2349227000, 0.2350262000, 0.2351298000, 0.2352332000,
1634 0.2353366000, 0.2354399000, 0.2355431000, 0.2356463000, 0.2357494000,
1635 0.2358525000, 0.2359555000, 0.2360584000, 0.2361612000, 0.2362640000,
1636 0.2363668000, 0.2364694000, 0.2365721000, 0.2366746000, 0.2367771000,
1637 0.2368795000, 0.2369819000, 0.2370842000, 0.2371864000, 0.2372886000,
1638 0.2373908000, 0.2374928000, 0.2375948000, 0.2376968000, 0.2377987000,
1639 0.2379005000, 0.2380023000, 0.2381041000, 0.2382057000, 0.2383074000,
1640 0.2384089000, 0.2385104000, 0.2386119000, 0.2387133000, 0.2388146000,
1641 0.2389159000, 0.2390172000, 0.2391184000, 0.2392195000, 0.2393206000,
1642 0.2394216000, 0.2395226000, 0.2396236000, 0.2397245000, 0.2398253000,
1643 0.2399261000, 0.2400268000, 0.2401275000, 0.2402281000, 0.2403287000,
1644 0.2404293000, 0.2405298000, 0.2406302000, 0.2407306000, 0.2408310000,
1645 0.2409313000, 0.2410316000, 0.2411318000, 0.2412320000, 0.2413321000,
1646 0.2414322000, 0.2415323000, 0.2416323000, 0.2417323000, 0.2418322000,
1647 0.2419321000, 0.2420319000, 0.2421317000, 0.2422315000, 0.2423312000,
1648 0.2424309000, 0.2425305000, 0.2426301000, 0.2427297000, 0.2428292000,
1649 0.2429287000, 0.2430281000, 0.2431275000, 0.2432269000, 0.2433262000,
1650 0.2434255000, 0.2435248000, 0.2436240000, 0.2437232000, 0.2438224000,
1651 0.2439215000, 0.2440206000, 0.2441196000, 0.2442187000, 0.2443176000,
1652 0.2444166000, 0.2445155000, 0.2446144000, 0.2447133000, 0.2448121000,
1653 0.2449109000, 0.2450097000, 0.2451084000, 0.2452071000, 0.2453058000,
1654 0.2454044000, 0.2455031000, 0.2456017000, 0.2457002000, 0.2457988000,
1655 0.2458973000, 0.2459957000, 0.2460942000, 0.2461926000, 0.2462910000,
1656 0.2463894000, 0.2464878000, 0.2465861000, 0.2466844000, 0.2467827000,
1657 0.2468809000, 0.2469792000, 0.2470774000, 0.2471756000, 0.2472737000,
1658 0.2473719000, 0.2474700000, 0.2475681000, 0.2476662000, 0.2477642000,
1659 0.2478623000, 0.2479603000, 0.2480583000, 0.2481563000, 0.2482542000,
1660 0.2483522000, 0.2484501000, 0.2485480000, 0.2486459000, 0.2487437000,
1661 0.2488416000, 0.2489394000, 0.2490372000, 0.2491351000, 0.2492328000,
1662 0.2493306000, 0.2494284000, 0.2495261000, 0.2496239000, 0.2497216000,
1663 0.2498193000, 0.2499170000, 0.2500146000, 0.2501123000, 0.2502100000,
1664 0.2503076000, 0.2504052000, 0.2505029000, 0.2506005000, 0.2506981000,
1665 0.2507956000, 0.2508932000, 0.2509908000, 0.2510883000, 0.2511859000,
1666 0.2512834000, 0.2513810000, 0.2514785000, 0.2515760000, 0.2516735000,
1667 0.2517710000, 0.2518685000, 0.2519660000, 0.2520635000, 0.2521610000,
1668 0.2522584000, 0.2523559000, 0.2524534000, 0.2525508000, 0.2526483000,
1669 0.2527457000, 0.2528432000, 0.2529406000, 0.2530381000, 0.2531355000,
1670 0.2532330000, 0.2533304000, 0.2534278000, 0.2535252000, 0.2536227000,
1671 0.2537201000, 0.2538175000, 0.2539150000, 0.2540124000, 0.2541098000,
1672 0.2542073000, 0.2543047000, 0.2544021000, 0.2544996000, 0.2545970000,
1673 0.2546944000, 0.2547919000, 0.2548893000, 0.2549868000, 0.2550842000,
1674 0.2551817000, 0.2552791000, 0.2553766000, 0.2554740000, 0.2555715000,
1675 0.2556690000, 0.2557665000, 0.2558639000, 0.2559614000, 0.2560589000,
1676 0.2561564000, 0.2562539000, 0.2563515000, 0.2564490000, 0.2565465000,
1677 0.2566441000, 0.2567416000, 0.2568392000, 0.2569367000, 0.2570343000,
1678 0.2571319000, 0.2572295000, 0.2573271000, 0.2574247000, 0.2575223000,
1679 0.2576199000, 0.2577176000, 0.2578152000, 0.2579129000, 0.2580106000,
1680 0.2581082000, 0.2582059000, 0.2583036000, 0.2584014000, 0.2584991000,
1681 0.2585968000, 0.2586946000, 0.2587924000, 0.2588902000, 0.2589879000,
1682 0.2590858000, 0.2591836000, 0.2592814000, 0.2593793000, 0.2594771000,
1683 0.2595750000, 0.2596729000, 0.2597708000, 0.2598688000, 0.2599667000,
1684 0.2600647000, 0.2601627000, 0.2602606000, 0.2603587000, 0.2604567000,
1685 0.2605547000, 0.2606528000, 0.2607509000, 0.2608490000, 0.2609471000,
1686 0.2610452000, 0.2611434000, 0.2612415000, 0.2613397000, 0.2614379000,
1687 0.2615361000, 0.2616344000, 0.2617326000, 0.2618309000, 0.2619292000,
1688 0.2620275000, 0.2621259000, 0.2622242000, 0.2623226000, 0.2624210000,
1689 0.2625194000, 0.2626179000, 0.2627164000, 0.2628148000, 0.2629133000,
1690 0.2630119000, 0.2631104000, 0.2632090000, 0.2633076000, 0.2634062000,
1691 0.2635048000, 0.2636035000, 0.2637022000, 0.2638009000, 0.2638996000,
1692 0.2639984000, 0.2640971000, 0.2641959000, 0.2642947000, 0.2643936000,
1693 0.2644925000, 0.2645913000, 0.2646903000, 0.2647892000, 0.2648882000,
1694 0.2649871000, 0.2650861000, 0.2651852000, 0.2652842000, 0.2653833000,
1695 0.2654824000, 0.2655816000, 0.2656807000, 0.2657799000, 0.2658791000,
1696 0.2659784000, 0.2660776000, 0.2661769000, 0.2662762000, 0.2663755000,
1697 0.2664749000, 0.2665743000, 0.2666737000, 0.2667731000, 0.2668726000,
1698 0.2669721000, 0.2670716000, 0.2671712000, 0.2672707000, 0.2673703000,
1699 0.2674700000, 0.2675696000, 0.2676693000, 0.2677690000, 0.2678687000,
1700 0.2679685000, 0.2680683000, 0.2681681000, 0.2682679000, 0.2683678000,
1701 0.2684677000, 0.2685676000, 0.2686675000, 0.2687675000, 0.2688675000,
1702 0.2689676000, 0.2690676000, 0.2691677000, 0.2692678000, 0.2693680000,
1703 0.2694681000, 0.2695683000, 0.2696685000, 0.2697688000, 0.2698691000,
1704 0.2699694000, 0.2700697000, 0.2701701000, 0.2702705000, 0.2703709000,
1705 0.2704713000, 0.2705718000, 0.2706723000, 0.2707729000, 0.2708734000,
1706 0.2709740000, 0.2710746000, 0.2711753000, 0.2712759000, 0.2713766000,
1707 0.2714774000, 0.2715781000, 0.2716789000, 0.2717797000, 0.2718806000,
1708 0.2719814000, 0.2720823000, 0.2721833000, 0.2722842000, 0.2723852000,
1709 0.2724862000, 0.2725873000, 0.2726883000, 0.2727894000, 0.2728905000,
1710 0.2729917000, 0.2730929000, 0.2731941000, 0.2732953000, 0.2733966000,
1711 0.2734979000, 0.2735992000, 0.2737005000, 0.2738019000, 0.2739033000,
1712 0.2740048000, 0.2741062000, 0.2742077000, 0.2743092000, 0.2744108000,
1713 0.2745123000, 0.2746139000, 0.2747156000, 0.2748172000, 0.2749189000,
1714 0.2750206000, 0.2751223000, 0.2752241000, 0.2753259000, 0.2754277000,
1715 0.2755295000, 0.2756314000, 0.2757333000, 0.2758352000, 0.2759372000,
1716 0.2760392000, 0.2761412000, 0.2762432000, 0.2763453000, 0.2764474000,
1717 0.2765495000, 0.2766516000, 0.2767538000, 0.2768560000, 0.2769582000,
1718 0.2770604000, 0.2771627000, 0.2772650000, 0.2773673000, 0.2774697000,
1719 0.2775720000, 0.2776745000, 0.2777769000, 0.2778793000, 0.2779818000,
1720 0.2780843000, 0.2781868000, 0.2782894000, 0.2783920000, 0.2784946000,
1721 0.2785972000, 0.2786999000, 0.2788026000, 0.2789053000, 0.2790080000,
1722 0.2791107000, 0.2792135000, 0.2793163000, 0.2794192000, 0.2795220000,
1723 0.2796249000, 0.2797278000, 0.2798307000, 0.2799337000, 0.2800366000,
1724 0.2801396000, 0.2802427000, 0.2803457000, 0.2804488000, 0.2805519000,
1725 0.2806550000, 0.2807581000, 0.2808613000, 0.2809645000, 0.2810677000,
1726 0.2811709000, 0.2812742000, 0.2813774000, 0.2814807000, 0.2815841000,
1727 0.2816874000, 0.2817908000, 0.2818942000, 0.2819976000, 0.2821010000,
1728 0.2822044000, 0.2823079000, 0.2824114000, 0.2825149000, 0.2826185000,
1729 0.2827220000, 0.2828256000, 0.2829292000, 0.2830328000, 0.2831365000,
1730 0.2832401000, 0.2833438000, 0.2834475000, 0.2835512000, 0.2836550000,
1731 0.2837588000, 0.2838625000, 0.2839663000, 0.2840702000, 0.2841740000,
1732 0.2842779000, 0.2843817000, 0.2844856000, 0.2845896000, 0.2846935000,
1733 0.2847975000, 0.2849014000, 0.2850054000, 0.2851094000, 0.2852135000,
1734 0.2853175000, 0.2854216000, 0.2855257000, 0.2856298000, 0.2857339000,
1735 0.2858380000, 0.2859422000, 0.2860464000, 0.2861505000, 0.2862548000,
1736 0.2863590000, 0.2864632000, 0.2865675000, 0.2866717000, 0.2867760000,
1737 0.2868803000, 0.2869847000, 0.2870890000, 0.2871933000, 0.2872977000,
1738 0.2874021000, 0.2875065000, 0.2876109000, 0.2877153000, 0.2878198000,
1739 0.2879242000, 0.2880287000, 0.2881332000, 0.2882377000, 0.2883422000,
1740 0.2884468000, 0.2885513000, 0.2886559000, 0.2887604000, 0.2888650000,
1741 0.2889696000, 0.2890742000, 0.2891789000, 0.2892835000, 0.2893882000,
1742 0.2894928000, 0.2895975000, 0.2897022000, 0.2898069000, 0.2899116000,
1743 0.2900163000, 0.2901211000, 0.2902258000, 0.2903306000, 0.2904354000,
1744 0.2905402000, 0.2906449000, 0.2907498000, 0.2908546000, 0.2909594000,
1745 0.2910642000, 0.2911691000, 0.2912740000, 0.2913788000, 0.2914837000
1746 };
1747 double width_K1;
1748 if(mass<1.35){
1749 width_K1=K1270_width[iii];
1750 }else{
1751 width_K1=K1400_width[iii];
1752 }
1753 a[0] = 1;
1754 a[1] = 0;
1755 b[0] = mass2-sa;
1756 //b[1] = -mass*width*wid(mass2,mass,sa,sb,sc,r2,l);
1757 b[1] = -mass*width_K1;
1758 Com_Divide(a,b,prop);
1759}
1760void EvtD0ToKSpi0pi0pi0::propagatorGS(double mass2, double mass, double width, double sa, double sb, double sc, double r2, double prop[2])
1761{
1762
1763 double GS1 = 0.636619783;
1764 double GS2 = 0.01860182466;
1765 double GS3 = 0.1591549458;
1766 double GS4 = 0.00620060822;
1767 double a[2], b[2];
1768 double tmp = sb-sc;
1769 double tmp1 = sa+tmp;
1770 double q2 = fabs(0.25*tmp1*tmp1/sa-sb);
1771 //if(q2<0) q2 = 1e-16;
1772
1773 double tmp2 = mass2+tmp;
1774 double q02 = fabs(0.25*tmp2*tmp2/mass2-sb);
1775 //if(q02<0) q02 = 1e-16;
1776
1777 double q = sqrt(q2);
1778 double q0 = sqrt(q02);
1779 double m = sqrt(sa);
1780 double q03 = q0*q02;
1781 double tmp3 = log(mass+2*q0)+1.2760418309; // log(mass_2Pion) = 1.2760418309;
1782
1783 double h = GS1*q/m*(log(m+2*q)+1.2760418309);
1784 double h0 = GS1*q0/mass*tmp3;
1785 double dh = h0*(0.125/q02-0.5/mass2)+GS3/mass2;
1786 double d = GS2/q02*tmp3+GS3*mass/q0-GS4*mass/q03;
1787 double f = mass2/q03*(q2*(h-h0)+(mass2-sa)*q02*dh);
1788
1789 a[0] = 1.0+d*width/mass;
1790 a[1] = 0.0;
1791 b[0] = mass2-sa+width*f;
1792 b[1] = -mass*width*widl1(mass2,mass,sa,sb,sc,r2);
1793 Com_Divide(a,b,prop);
1794}
1795void EvtD0ToKSpi0pi0pi0::rhoab(double sa, double sb, double sc, double res[2]) {
1796 double tmp = sa+sb-sc;
1797 double q = 0.25*tmp*tmp/sa-sb;
1798 if(q>=0) {
1799 res[0]=2.0*sqrt(q/sa);
1800 res[1]=0.0;
1801 } else {
1802 res[0]=0.0;
1803 res[1]=2.0*sqrt(-q/sa);
1804 }
1805}
1806void EvtD0ToKSpi0pi0pi0::rho4Pi(double sa, double res[2]) {
1807 double temp = 1.0-0.3116765584/sa; // 0.3116765584=0.13957*0.13957*16
1808 if(temp>=0) {
1809 res[0]=sqrt(temp)/(1.0+exp(9.8-3.5*sa));
1810 res[1]=0.0;
1811 } else {
1812 res[0]=0.0;
1813 res[1]=sqrt(-temp)/(1.0+exp(9.8-3.5*sa));
1814 }
1815}
1816void EvtD0ToKSpi0pi0pi0::propagatorsigma500(double sa, double sb, double sc, double prop[2]) {
1817 double f = 0.5843+1.6663*sa;
1818 const double M = 0.9264;
1819 const double mass2 = 0.85821696; // M*M
1820 const double mpi2d2 = 0.00973989245;
1821 double g1 = f*(sa-mpi2d2)/(mass2-mpi2d2)*exp((mass2-sa)/1.082);
1822 double rho1s[2], rho1M[2], rho2s[2], rho2M[2], rho1[2], rho2[2];
1823 rhoab(sa,sb,sc,rho1s);
1824 rhoab(mass2,sb,sc,rho1M);
1825 rho4Pi(sa,rho2s);
1826 rho4Pi(mass2,rho2M);
1827 Com_Divide(rho1s,rho1M,rho1);
1828 Com_Divide(rho2s,rho2M,rho2);
1829 double a[2], b[2];
1830 a[0] = 1.0;
1831 a[1] = 0.0;
1832 b[0] = mass2-sa+M*(g1*rho1[1]+0.0024*rho2[1]);
1833 b[1] = -M*(g1*rho1[0]+0.0024*rho2[0]);
1834 Com_Divide(a,b,prop);
1835}
1836void EvtD0ToKSpi0pi0pi0::Flatte_rhoab(double sa, double sb, double sc, double rho[2])
1837{
1838 double q = (sa+sb-sc)*(sa+sb-sc)/(4*sa)-sb;
1839 if(q>0) {
1840 rho[0]=2* sqrt(q/sa);
1841 rho[1]=0;
1842 }
1843 else if(q<0){
1844 rho[0]=0;
1845 rho[1]=2*sqrt(-q/sa);
1846 }
1847}
1848void EvtD0ToKSpi0pi0pi0::propagator980(double mass, double sx, double *sb, double *sc, double prop[2])
1849{
1850 double unit[2]={1.0};
1851 double ci[2]={0,1};
1852 double rho1[2];
1853 Flatte_rhoab(sx,sb[0],sc[0],rho1);
1854 double rho2[2];
1855 Flatte_rhoab(sx,sb[1],sc[1],rho2);
1856 double gK_f980=0.69465, gPi_f980=0.165;
1857 double tmp1[2]={gK_f980,0};
1858 double tmp11[2];
1859 double tmp2[2]={gPi_f980,0};
1860 double tmp22[2];
1861 Com_Multi(tmp1,rho1,tmp11);
1862 Com_Multi(tmp2,rho2,tmp22);
1863 double tmp3[2]={tmp11[0]+tmp22[0],tmp11[1]+tmp22[1]};
1864 double tmp31[2];
1865 Com_Multi(tmp3, ci,tmp31);
1866 double tmp4[2]={mass*mass-sx-tmp31[0], -1.0*tmp31[1]};
1867 Com_Divide( unit,tmp4, prop);
1868}
1869void EvtD0ToKSpi0pi0pi0::propagatorFlatte(double mass, double width, double sa, double prop[2]){
1870 double q2_Pi, q2_Ka;
1871 double rhoPi[2], rhoKa[2];
1872 q2_Pi = 0.25*sa-mPi*mPi;
1873 q2_Ka = 0.25*sa-mKa*mKa;
1874 if (q2_Pi > 0) {
1875 rhoPi[0] = 2.0*sqrt(q2_Pi/sa);
1876 rhoPi[1] = 0.0;
1877 }
1878 if (q2_Pi <= 0) {
1879 rhoPi[0] = 0.0;
1880 rhoPi[1] = 2.0*sqrt(-q2_Pi/sa);
1881 }
1882 if (q2_Ka > 0) {
1883 rhoKa[0] = 2.0*sqrt(q2_Ka/sa);
1884 rhoKa[1] = 0.0;
1885 }
1886 if (q2_Ka <= 0) {
1887 rhoKa[0] = 0.0;
1888 rhoKa[1] = 2.0*sqrt(-q2_Ka/sa);
1889 }
1890 double a[2], b[2];
1891 a[0] = 1;
1892 a[1] = 0;
1893 b[0] = mass*mass - sa + 0.165*rhoPi[1] + 0.69465*rhoKa[1];
1894 b[1] = - (0.165*rhoPi[0] + 0.69465*rhoKa[0]);
1895 Com_Divide(a,b,prop);
1896
1897}
1898void EvtD0ToKSpi0pi0pi0::KPiSLASS(double sa, double sb, double sc, double prop[2]) {
1899 const double m1430 = 1.441;
1900 const double sa0 = 2.076481; // m1430*m1430;
1901 const double w1430 = 0.193;
1902 const double Lass1 = 0.25/sa0;
1903 double tmp = sb-sc;
1904 double tmp1 = sa0+tmp;
1905 double q0 = fabs(Lass1*tmp1*tmp1-sb);
1906 //if(q0<0) q0 = 1e-16;
1907 double tmp2 = sa+tmp;
1908 double qs = fabs(0.25*tmp2*tmp2/sa-sb);
1909 double q = sqrt(qs);
1910 double width = w1430*q*m1430/sqrt(sa*q0);
1911 double temp_R = atan(m1430*width/(sa0-sa));
1912 if(temp_R<0) temp_R += math_pi;
1913 double deltaR = -109.7*math_pi/180.0 + temp_R;
1914 double temp_F = atan(0.226*q/(2.0-3.8194*qs)); // 2.0*0.113 = 0.226; -33.8*0.113 = -3.8194
1915 if(temp_F<0) temp_F += math_pi;
1916 double deltaF = 0.1*math_pi/180.0 + temp_F;
1917 double deltaS = deltaR + 2.0*deltaF;
1918 double t1 = 0.96*sin(deltaF);
1919 double t2 = sin(deltaR);
1920 double CF[2], CS[2];
1921 CF[0] = cos(deltaF);
1922 CF[1] = sin(deltaF);
1923 CS[0] = cos(deltaS);
1924 CS[1] = sin(deltaS);
1925 prop[0] = t1*CF[0] + t2*CS[0];
1926 prop[1] = t1*CF[1] + t2*CS[1];
1927
1928}
1929
1930void EvtD0ToKSpi0pi0pi0::PiPiSWAVE(double sa, double sb, double sc, double prop[2]){
1931
1932 double tmp = sb -sc;
1933 double tmp2 = sa + tmp;
1934 double qs = 0.25*tmp2*tmp2/sa - sb;
1935 double q = sqrt(qs);
1936 double a0 = -0.11/mass_Pion;
1937 prop[0] = 1/(1+a0*a0*q*q);
1938 prop[1] = a0*q/(1+a0*a0*q*q);
1939
1940}
1941
1942
1943double EvtD0ToKSpi0pi0pi0::CalRho4pi(double_t s)
1944{
1945 if(s>=1.){
1946 return sqrt((s-16.*mass_Pion*mass_Pion)/s);
1947 }
1948 else{
1949 double_t s0 = 1.2274+0.00370909/(s*s) - (0.111203)/(s) - 6.39017*s +16.8358*s*s - 21.8845*s*s*s + 11.3153*s*s*s*s;
1950 double_t gam = s0*sqrt(1.0-(16.0*mass_Pion*mass_Pion));
1951
1952 return gam;
1953 }
1954}
1955
1956
1957void EvtD0ToKSpi0pi0pi0::rhoMTX(int i, int j, double s, double Rho[2]){
1958
1959 double rhoijx;
1960 double rhoijy;
1961 //double mpi = 0.13957;
1962 if(i==j && i==0 ){
1963 double m2 = 0.13957*0.13957;
1964 if((1-(4*m2)/s)>0){
1965 rhoijx = sqrt(1.0f - (4*m2)/s);
1966 rhoijy = 0;
1967 }else{
1968 rhoijy = sqrt((4*m2)/s - 1.0f);
1969 rhoijx = 0;
1970 }
1971 }
1972 if(i==j && i==1 ){
1973 double m2 = 0.49368*0.49368;
1974 if((1-(4*m2)/s)>0){
1975 rhoijx = sqrt(1.0f - (4*m2)/s);
1976 rhoijy = 0;
1977 }else{
1978 rhoijy = sqrt((4*m2)/s - 1.0f);
1979 rhoijx = 0;
1980 }
1981 }
1982
1983 if(i==j && i==2){
1984 rhoijx = CalRho4pi(s);
1985 rhoijy = 0;
1986 }
1987 if(i==j && i==3){
1988 double m2 = 0.547862*0.547862;
1989 if((1-(4*m2)/s)>0){
1990 rhoijx = sqrt(1.0f - (4*m2)/s);
1991 rhoijy = 0;
1992 }else{
1993 rhoijy = sqrt((4*m2)/s - 1.0f);
1994 rhoijx = 0;
1995 }
1996 }
1997 if(i==j && i==4){
1998 double m_1 = 0.547862;
1999 double m_2 = 0.95778;
2000 double mp2 = (m_1+m_2)*(m_1+m_2);
2001 //double mm2 = (m_1-m_2)*(m_1-m_2);
2002 if((1-mp2/s)>0){
2003 rhoijx = sqrt(1.0f - mp2/s);
2004 rhoijy = 0;
2005 }else{
2006 rhoijy = sqrt(mp2/s - 1.0f);
2007 rhoijx = 0;
2008 }
2009 }
2010
2011 if(i!=j){
2012 rhoijx = 0;
2013 rhoijy = 0;
2014 }
2015 Rho[0] = rhoijx;
2016 Rho[1] = rhoijy;
2017
2018}
2019
2020
2021void EvtD0ToKSpi0pi0pi0::KMTX(int i, int j, double s,double KM[2]){
2022
2023 double Kijx;
2024 double Kijy;
2025 double mpi = 0.13957;
2026 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
2027
2028 double g1[5] = { 0.22889,-0.55377, 0.00000,-0.39899,-0.34639};
2029 double g2[5] = { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503};
2030 double g3[5] = { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681};
2031 double g4[5] = { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984};
2032 double g5[5] = { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358};
2033
2034 double f1[5] = { 0.23399, 0.15044,-0.20545, 0.32825, 0.35412};
2035
2036 double upimag[5] = { 0,0,0,0,0};
2037
2038 for(int k=0; k<5; k++){
2039 upimag[k] = 0;
2040 }
2041 double ss0 = -3.92637;
2042 double sA = 1.0;//v1
2043 double sA0 = -0.15;
2044
2045 if(i==0||j==0){
2046 Kijx = (g1[i]*g1[j]/(m[0]*m[0]-s) + g2[i]*g2[j]/(m[1]*m[1]-s) + g3[i]*g3[j]/(m[2]*m[2]-s) + g4[i]*g4[j]/(m[3]*m[3]-s) + g5[i]*g5[j]/(m[4]*m[4]-s)+f1[j]*(1-ss0)/(s-ss0))*(1-sA0)/(s-sA0)*(s-sA*mpi*mpi*0.5);
2047 Kijy = (g1[i]*g1[j]*upimag[0] + g2[i]*g2[j]*upimag[1] + g3[i]*g3[j]*upimag[2] + g4[i]*g4[j]*upimag[3] + g5[i]*g5[j]*upimag[4])*(1-sA0)/(s-sA0)*(s-sA*mpi*mpi*0.5);
2048 }
2049
2050 else{
2051 Kijx = (g1[i]*g1[j]/(m[0]*m[0]-s) + g2[i]*g2[j]/(m[1]*m[1]-s) + g3[i]*g3[j]/(m[2]*m[2]-s) + g4[i]*g4[j]/(m[3]*m[3]-s) + g5[i]*g5[j]/(m[4]*m[4]-s))*(1-sA0)/(s-sA0)*(s-sA*mpi*mpi*0.5);
2052 Kijy = (g1[i]*g1[j]*upimag[0] + g2[i]*g2[j]*upimag[1] + g3[i]*g3[j]*upimag[2] + g4[i]*g4[j]*upimag[3] + g5[i]*g5[j]*upimag[4])*(1-sA0)/(s-sA0)*(s-sA*mpi*mpi*0.5);
2053 }
2054
2055 KM[0] = Kijx;
2056 KM[1] = Kijy;
2057}
2058
2059
2060void EvtD0ToKSpi0pi0pi0::IMTX(int i, int j, double IMTX[2]){
2061
2062 double Iijx;
2063 double Iijy;
2064 if(i==j){
2065 Iijx = 1;
2066 Iijy = 0;
2067 }else{
2068 Iijx = 0;
2069 Iijy = 0;
2070 }
2071 IMTX[0] = Iijx;
2072 IMTX[1] = Iijy;
2073
2074}
2075
2076
2077void EvtD0ToKSpi0pi0pi0::FMTX(double Kijx, double Kijy, double rhojjx, double rhojjy, int i, int j, double FM[2]){
2078
2079 double Fijx;
2080 double Fijy;
2081
2082 double tmpx = Kijx*rhojjx - Kijy*rhojjy;
2083 double tmpy = Kijy*rhojjx + Kijx*rhojjy;
2084
2085 double imtx[2];
2086 IMTX(i,j,imtx);
2087 Fijx = imtx[0]+tmpy;
2088 Fijy = -tmpx;
2089
2090 FM[0] = Fijx;
2091 FM[1] = Fijy;
2092
2093}
2094
2095
2096void EvtD0ToKSpi0pi0pi0::PVTR(int ID, double s, double PV[2],double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10, double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10){
2097
2098 double VPix;
2099 double VPiy;
2100 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
2101
2102 double g[5][5] = {{ 0.22889,-0.55377, 0.00000,-0.39899,-0.34639},
2103 { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503},
2104 { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681},
2105 { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984},
2106 { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358}};
2107
2108 double betax[5], betay[5], fprodx[5], fprody[5];
2109
2110 betax[0] = b1*cos(b6); betay[0] = b1*sin(b6);
2111 betax[1] = b2*cos(b7); betay[1] = b2*sin(b7);
2112 betax[2] = b3*cos(b8); betay[2] = b3*sin(b8);
2113 betax[3] = b4*cos(b9); betay[3] = b4*sin(b9);
2114 betax[4] = b5*cos(b10); betay[4] = b5*sin(b10);
2115
2116 fprodx[0] = f1*cos(f6); fprody[0] = f1*sin(f6);
2117 fprodx[1] = f2*cos(f7); fprody[1] = f2*sin(f7);
2118 fprodx[2] = f3*cos(f8); fprody[2] = f3*sin(f8);
2119 fprodx[3] = f4*cos(f9); fprody[3] = f4*sin(f9);
2120 fprodx[4] = f5*cos(f10); fprody[4] = f5*sin(f10);
2121
2122
2123
2124
2125 double V0x = 0.0, V0y = 0.0, V1x = 0.0, V1y = 0.0;
2126 double s0_prod = -0.07;
2127
2128 for(int k=0;k<5;k++) {
2129 V0x += betax[k]*g[k][ID]/(m[k]*m[k]-s);
2130 V0y += betay[k]*g[k][ID]/(m[k]*m[k]-s);
2131 }
2132 V1x += (1.-s0_prod)/(s-s0_prod)*fprodx[ID];
2133 V1y += (1.-s0_prod)/(s-s0_prod)*fprody[ID];
2134
2135 VPix = V0x+V1x;
2136 VPiy = V0y+V1y;
2137
2138 PV[0] = VPix;
2139 PV[1] = VPiy;
2140
2141}
2142
2143
2144void EvtD0ToKSpi0pi0pi0::FINVMTX(double s, double *FINVx, double *FINVy){
2145
2146 int P[5] = { 0,1,2,3,4};
2147
2148 double Fx[5][5];
2149 double Fy[5][5];
2150
2151 double Ux[5][5];
2152 double Uy[5][5];
2153 double Lx[5][5];
2154 double Ly[5][5];
2155
2156 double UIx[5][5];
2157 double UIy[5][5];
2158 double LIx[5][5];
2159 double LIy[5][5];
2160
2161 double rho[2];
2162 double KM[2];
2163 for(int k=0; k<5; k++){
2164 rhoMTX(k,k,s,rho);
2165 double rhokkx = rho[0];
2166 double rhokky = rho[1];
2167 Ux[k][k] = rhokkx;
2168 Uy[k][k] = rhokky;
2169 for(int l=k; l<5; l++){
2170 KMTX(k,l,s,KM);
2171 double Kklx = KM[0];
2172 double Kkly = KM[1];
2173 Lx[k][l] = Kklx;
2174 Ly[k][l] = Kkly;
2175 Lx[l][k] = Lx[k][l];
2176 Ly[l][k] = Ly[k][l];
2177 }
2178 }
2179
2180 double AA[2];
2181 for(int k=0; k<5; k++){
2182 for(int l=0; l<5; l++){
2183 FMTX(Lx[k][l],Ly[k][l],Ux[l][l],Uy[l][l],k,l,AA);
2184 double Fklx = AA[0];
2185 double Fkly = AA[1];
2186 Fx[k][l] = Fklx;
2187 Fy[k][l] = Fkly;
2188 }
2189 }
2190
2191 for(int k=0; k<5; k++){
2192 double tmprM = (Fx[k][k]*Fx[k][k]+Fy[k][k]*Fy[k][k]);
2193 int tmpID = 0;
2194 for(int l=k; l<5; l++){
2195 double tmprF = (Fx[l][k]*Fx[l][k]+Fy[l][k]*Fy[l][k]);
2196 if(tmprM<=tmprF){
2197 tmprM = tmprF;
2198 tmpID = l;
2199 }
2200 }
2201 int tmpP = P[k];
2202 P[k] = P[tmpID];
2203 P[tmpID] = tmpP;
2204
2205 for(int l=0; l<5; l++){
2206
2207 double tmpFx = Fx[k][l];
2208 double tmpFy = Fy[k][l];
2209
2210 Fx[k][l] = Fx[tmpID][l];
2211 Fy[k][l] = Fy[tmpID][l];
2212
2213 Fx[tmpID][l] = tmpFx;
2214 Fy[tmpID][l] = tmpFy;
2215
2216 }
2217
2218 for(int l=k+1; l<5; l++){
2219 double rFkk = Fx[k][k]*Fx[k][k] + Fy[k][k]*Fy[k][k];
2220 double Fxlk = Fx[l][k];
2221 double Fylk = Fy[l][k];
2222 double Fxkk = Fx[k][k];
2223 double Fykk = Fy[k][k];
2224 Fx[l][k] = (Fxlk*Fxkk + Fylk*Fykk)/rFkk;
2225 Fy[l][k] = (Fylk*Fxkk - Fxlk*Fykk)/rFkk;
2226 for(int m=k+1; m<5; m++){
2227 Fx[l][m] = Fx[l][m] - (Fx[l][k]*Fx[k][m] - Fy[l][k]*Fy[k][m]);
2228 Fy[l][m] = Fy[l][m] - (Fx[l][k]*Fy[k][m] + Fy[l][k]*Fx[k][m]);
2229 }
2230 }
2231 }
2232
2233 for(int k=0; k<5; k++){
2234 for(int l=0; l<5 ;l++){
2235 if(k==l){
2236 Lx[k][k] = 1;
2237 Ly[k][k] = 0;
2238 Ux[k][k] = Fx[k][k];
2239 Uy[k][k] = Fy[k][k];
2240 }
2241 if(k>l){
2242 Lx[k][l] = Fx[k][l];
2243 Ly[k][l] = Fy[k][l];
2244 Ux[k][l] = 0;
2245 Uy[k][l] = 0;
2246 }
2247 if(k<l){
2248 Ux[k][l] = Fx[k][l];
2249 Uy[k][l] = Fy[k][l];
2250 Lx[k][l] = 0;
2251 Ly[k][l] = 0;
2252 }
2253 }
2254 }
2255
2256
2257 for(int k=0; k<5; k++){
2258
2259 LIx[k][k] = 1;
2260 LIy[k][k] = 0;
2261
2262 double rUkk = Ux[k][k]*Ux[k][k] + Uy[k][k]*Uy[k][k];
2263 UIx[k][k] = Ux[k][k]/rUkk;
2264 UIy[k][k] = -1.0f * Uy[k][k]/rUkk ;
2265
2266 for(int l=(k+1); l<5; l++){
2267 LIx[k][l] = 0;
2268 LIy[k][l] = 0;
2269 UIx[l][k] = 0;
2270 UIy[l][k] = 0;
2271 }
2272 for(int l=(k-1); l>=0; l--){ // U-1
2273 double sx = 0;
2274 double c_sx = 0;
2275 double sy = 0;
2276 double c_sy = 0;
2277 for(int m=l+1; m<=k; m++){
2278 sx = sx - c_sx;
2279 double sx_tmp = sx + Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k];
2280 c_sx = (sx_tmp - sx) - (Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k]);
2281 sx = sx_tmp;
2282
2283 sy = sy - c_sy;
2284 double sy_tmp = sy + Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k];
2285 c_sy = (sy_tmp - sy) - (Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k]);
2286 sy = sy_tmp;
2287 }
2288 UIx[l][k] = -1.0f * (UIx[l][l]*sx - UIy[l][l]*sy);
2289 UIy[l][k] = -1.0f * (UIy[l][l]*sx + UIx[l][l]*sy);
2290 }
2291
2292
2293 for(int l=k+1; l<5; l++){ // L-1
2294 double sx = 0;
2295 double c_sx = 0;
2296 double sy = 0;
2297 double c_sy = 0;
2298 for(int m=k; m<l; m++){
2299 sx = sx - c_sx;
2300 double sx_tmp = sx + Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k];
2301 c_sx = (sx_tmp - sx) - (Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k]);
2302 sx = sx_tmp;
2303
2304 sy = sy - c_sy;
2305 double sy_tmp = sy + Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k];
2306 c_sy = (sy_tmp - sy) - (Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k]);
2307 sy = sy_tmp;
2308 }
2309 LIx[l][k] = -1.0f * sx;
2310 LIy[l][k] = -1.0f * sy;
2311 }
2312 }
2313
2314 for(int m=0; m<5; m++){
2315 double resX = 0;
2316 double c_resX = 0;
2317 double resY = 0;
2318 double c_resY = 0;
2319 for(int k=0; k<5; k++){
2320 for(int l=0; l<5; l++){
2321 double Plm = 0;
2322 if(P[l] == m) Plm = 1;
2323
2324 resX = resX - c_resX;
2325 double resX_tmp = resX + (UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm;
2326 c_resX = (resX_tmp - resX) - ((UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm);
2327 resX = resX_tmp;
2328
2329 resY = resY - c_resY;
2330 double resY_tmp = resY + (UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm;
2331 c_resY = (resY_tmp - resY) - ((UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm);
2332 resY = resY_tmp;
2333 }
2334 }
2335 FINVx[m] = resX;
2336 FINVy[m] = resY;
2337 }
2338}
2339
2340void EvtD0ToKSpi0pi0pi0::Fvector(double sa, double s0, double Fv[2],double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10, double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10){
2341
2342 double outputx = 0;
2343 double outputy = 0;
2344
2345 double FINVx[5] = {0,0,0,0,0};
2346 double FINVy[5] = {0,0,0,0,0};
2347
2348 FINVMTX(sa,FINVx,FINVy);
2349
2350 double resx = 0;
2351 double c_resx = 0;
2352 double resy = 0;
2353 double c_resy = 0;
2354 double pv[2];
2355 for(int j=0; j<5; j++){
2356 PVTR(j,sa,pv,sp0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10);
2357 double Plx = pv[0];
2358 double Ply = pv[1];
2359 resx = resx - c_resx;
2360 double resx_tmp = resx + (FINVx[j]*Plx - FINVy[j]*Ply);
2361 c_resx = (resx_tmp - resx) - (FINVx[j]*Plx - FINVy[j]*Ply);
2362 resx = resx_tmp;
2363
2364 resy = resy - c_resy;
2365 double resy_tmp = resy + (FINVx[j]*Ply + FINVy[j]*Plx);
2366 c_resy = (resy_tmp - resy) - (FINVx[j]*Ply + FINVy[j]*Plx);
2367 resy = resy_tmp;
2368 }
2369 outputx = resx;
2370 outputy = resy;
2371 Fv[0] = outputx;
2372 Fv[1] = outputy;
2373
2374}
2375
2376
2377//------------------------------Decay Process------------------------------------//
2378void EvtD0ToKSpi0pi0pi0::DtoVP_S(double Ks_e, double Ks_px, double Ks_py, double Ks_pz,
2379 double Pi01_e, double Pi01_px, double Pi01_py, double Pi01_pz,
2380 double Pi02_e, double Pi02_px, double Pi02_py, double Pi02_pz,
2381 double Pi03_e, double Pi03_px, double Pi03_py, double Pi03_pz,
2382 double mass1, double width1, int ang1, int ang2, int g0, double propagator[], double& tmp_PDF,
2383 double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10,
2384 double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10 )
2385{
2386
2387 double Ks[4] = {Ks_e, Ks_px, Ks_py, Ks_pz};
2388 double Pi01[4]= {Pi01_e, Pi01_px, Pi01_py, Pi01_pz};
2389 double Pi02[4]= {Pi02_e, Pi02_px, Pi02_py, Pi02_pz};
2390 double Pi03[4]= {Pi03_e, Pi03_px, Pi03_py, Pi03_pz};
2391
2392 double mass1sq = mass1*mass1;
2393 double pD[4], pKsPi01[4], pPi02Pi03[4];
2394 for(int i = 0; i < 4; i++){
2395 pPi02Pi03[i] =Pi02[i]+Pi03[i];
2396 pKsPi01[i] =Ks[i]+Pi01[i];
2397 pD[i] = Ks[i]+Pi02[i]+Pi01[i]+Pi03[i];
2398
2399 }
2400 double sPi02,sPi01,sKs,sPi03,sKsPi01, sPi02Pi03, sD;
2401 sKs = SCADot(Ks,Ks);
2402 sPi01 = SCADot(Pi01,Pi01);
2403 sPi02 = SCADot(Pi02,Pi02);
2404 sPi03 = SCADot(Pi03,Pi03);
2405 sKsPi01 = SCADot(pKsPi01,pKsPi01);
2406 sPi02Pi03 =SCADot(pPi02Pi03,pPi02Pi03);
2407 sD = SCADot(pD,pD);
2408
2409 double B[2];
2410 B[0] = barrier(ang1, sD, sKsPi01, sPi02Pi03, rD2, mD*mD);
2411 B[1] = barrier(ang2, sKsPi01, sKs, sPi01, rRes2, mass1sq);
2412
2413 double propagtr_kspi01[2], pro[2], Fv1[2];
2414 propagatorRBW(mass1sq, mass1, width1, sKsPi01, sKs, sPi01, rRes2, 1, propagtr_kspi01);
2415 if( g0 == 0){
2416 PiPiSWAVE(sPi02Pi03, sPi02, sPi02, pro);
2417 Com_Multi(propagtr_kspi01, pro, propagator);
2418 }else if(g0 == 1){
2419 Fvector(sPi02Pi03,-0.07,Fv1,sp0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 );
2420 Com_Multi(propagtr_kspi01, Fv1, propagator);
2421
2422 }else if(g0 == 2){
2423 propagatorsigma500(sPi02Pi03, sPi02, sPi03, pro);
2424 Com_Multi(propagtr_kspi01, pro, propagator);
2425 }
2426 double t1D[4];
2427 double t1KsPi01[4];
2428 calt1(Ks, Pi01,t1KsPi01);
2429 calt1(pKsPi01, pPi02Pi03, t1D);
2430
2431 double temp_PDF = 0;
2432 if(ang2==1){
2433 for(int a=0; a<4; a++){
2434 temp_PDF += G[a][a]*t1D[a]*t1KsPi01[a];
2435 }
2436 tmp_PDF = B[0]*B[1]*temp_PDF;
2437 }
2438}
2439
2440
2441void EvtD0ToKSpi0pi0pi0::DtoAP( double Ks_e, double Ks_px, double Ks_py, double Ks_pz,
2442 double Pi01_e, double Pi01_px, double Pi01_py, double Pi01_pz,
2443 double Pi02_e, double Pi02_px, double Pi02_py, double Pi02_pz,
2444 double Pi03_e, double Pi03_px, double Pi03_py, double Pi03_pz,
2445 double mass1, double mass2, double width1, double width2, int ang1, int ang2, int ang3, int f0, double propagator[], double& tmp_PDF,
2446 double akeMag, double a32Mag, double akePhs, double a32Phs)
2447{
2448
2449 double Ks[4] = {Ks_e, Ks_px, Ks_py, Ks_pz};
2450 double Pi01[4]= {Pi01_e, Pi01_px, Pi01_py, Pi01_pz};
2451 double Pi02[4]= {Pi02_e, Pi02_px, Pi02_py, Pi02_pz};
2452 double Pi03[4]= {Pi03_e, Pi03_px, Pi03_py, Pi03_pz};
2453
2454 double mass1sq = mass1*mass1;
2455 double mass2sq = mass2*mass2;
2456
2457 double pD[4], pKsPi01[4], pPi01Pi02[4], pKsPi01Pi02[4];
2458 for(int i = 0; i != 4; i++){
2459 pD[i] = Ks[i]+Pi02[i]+Pi01[i]+Pi03[i];
2460 pKsPi01[i] =Ks[i]+Pi01[i];
2461 pPi01Pi02[i] =Pi01[i]+Pi02[i];
2462 pKsPi01Pi02[i] = pKsPi01[i] + Pi02[i];
2463 }
2464
2465 double sD, sKs, sPi01, sPi02, sPi03, sKsPi01, sPi01Pi02, sKsPi01Pi02;
2466 sKs = SCADot(Ks,Ks);
2467 sPi01 = SCADot(Pi01,Pi01);
2468 sPi02 = SCADot(Pi02,Pi02);
2469 sPi03 = SCADot(Pi03,Pi03);
2470 sD = SCADot(pD,pD);
2471 sKsPi01 = SCADot(pKsPi01,pKsPi01);
2472 sPi01Pi02 =SCADot(pPi01Pi02,pPi01Pi02);
2473 sKsPi01Pi02 = SCADot(pKsPi01Pi02,pKsPi01Pi02);
2474
2475 double t1KsPi01[4], t1D[4], t1KsPi01Pi02_Kspi01[4], t1KsPi01Pi02_pi012[4];
2476 calt1(Ks, Pi01,t1KsPi01);
2477 calt1(pKsPi01Pi02, Pi03, t1D);
2478 calt1(pKsPi01, Pi02, t1KsPi01Pi02_Kspi01);
2479 calt1(Ks, pPi01Pi02, t1KsPi01Pi02_pi012);
2480
2481 double t2KsPi01Pi02_Kspi01[4][4];
2482 calt2(pKsPi01, Pi02, t2KsPi01Pi02_Kspi01);
2483
2484 double B[3];
2485 B[0] = barrier(ang1, sD, sKsPi01Pi02, sPi03, rD2, mD*mD);
2486 if (f0 == 0){
2487 B[1] = barrier(ang2, sKsPi01Pi02, sKsPi01, sPi02, rRes2, mass1sq);
2488 }else if (f0 == 1){
2489 B[1] = barrier(ang2, sKsPi01Pi02, sKs, sPi01Pi02, rRes2, mass1sq);
2490 }
2491 B[2] = barrier(ang3, sKsPi01, sKs, sPi01, rRes2, mass2sq);
2492
2493
2494 double propagtr1[2], propagtr2[2];
2495 propagatorRBW(mass1sq, mass1, width1, sKsPi01Pi02, sKsPi01, sPi02, rRes2, ang2, propagtr1);
2496 if(ang3 == 1){
2497 propagatorRBW(mass2sq, mass2, width2, sKsPi01, sKs, sPi01, rRes2, ang3, propagtr2);
2498 }else if(ang3 == 0 && f0 == 0){
2499 //KPiSLASS(sKsPi01, sKs, sPi01, propagtr2);
2500 kpiSwave(sKsPi01, akeMag, a32Mag, akePhs, a32Phs, propagtr2);
2501 }else if(ang3 == 0 && f0 == 1){
2502 propagatorsigma500(sPi01Pi02, sPi01, sPi02, propagtr2);
2503 }
2504 Com_Multi(propagtr1, propagtr2, propagator);
2505
2506 double temp_PDF = 0;
2507 if(ang2==0){//K1 -> k*
2508 for(int a=0; a<4; a++){
2509 for(int j=0; j<4; j++){
2510 temp_PDF += t1D[a]*(pKsPi01Pi02[a]*pKsPi01Pi02[j]/sKsPi01Pi02-G[a][j])*t1KsPi01[j]*G[a][a]*G[j][j];
2511 }
2512 }
2513 tmp_PDF = B[0]*B[1]*B[2]*temp_PDF; //B[2] = 1 when L = 0
2514 }else if(ang2 == 1&& f0 == 0){//K1 -> Kspi0_s pi0
2515 for(int a=0; a<4; a++){
2516 temp_PDF += G[a][a]*t1D[a]*t1KsPi01Pi02_Kspi01[a];
2517 }
2518 tmp_PDF = B[0]*B[1]*B[2]*temp_PDF;
2519
2520 }else if(ang2 == 1 && f0 ==1){//K1 -> Ks f0
2521 for(int a=0; a<4; a++){
2522 temp_PDF += G[a][a]*t1D[a]*t1KsPi01Pi02_pi012[a];
2523 }
2524 tmp_PDF = B[0]*B[1]*temp_PDF;
2525 }
2526 else if(ang2==2){
2527 for(int a=0; a<4; a++){
2528 for(int j=0; j<4; j++){
2529 temp_PDF += t1D[a]*t2KsPi01Pi02_Kspi01[a][j]*t1KsPi01[j]*G[a][a]*G[j][j];
2530 }
2531 }
2532 tmp_PDF = B[0]*B[1]*B[2]*temp_PDF;
2533 }
2534
2535
2536}
2537
2538
2539void EvtD0ToKSpi0pi0pi0::DtoPP(double Ks_e, double Ks_px, double Ks_py, double Ks_pz,
2540 double Pi01_e, double Pi01_px, double Pi01_py, double Pi01_pz,
2541 double Pi02_e, double Pi02_px, double Pi02_py, double Pi02_pz,
2542 double Pi03_e, double Pi03_px, double Pi03_py, double Pi03_pz,
2543 double mass1, double mass2, double width1, double width2,int ang1, int ang2, int ang3, double propagator[], double& tmp_PDF,
2544 double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10,
2545 double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10)
2546{
2547 // printf("Ks.e: %f; Ks-px: %f\n", Ks_e, Ks_px);
2548 // printf("pi01.e: %f; pi01.px: %f\n", Pi01_e, Pi01_px);
2549 // printf("pi02.e: %f; pi03.px: %f\n", Pi02_e, Pi02_px);
2550 // printf("pi03.e: %f; pi03.px: %f\n", Pi03_e, Pi03_px);
2551 double Ks[4] = {Ks_e, Ks_px, Ks_py, Ks_pz};
2552 double Pi01[4]= {Pi01_e, Pi01_px, Pi01_py, Pi01_pz};
2553 double Pi02[4]= {Pi02_e, Pi02_px, Pi02_py, Pi02_pz};
2554 double Pi03[4]= {Pi03_e, Pi03_px, Pi03_py, Pi03_pz};
2555
2556 double mass1sq = mass1*mass1;
2557 double mass2sq = mass2*mass2;
2558 // printf("mass1sq = %.10f\n", mass1sq);
2559
2560 double pD[4], pKsPi01[4], pPi01Pi02[4], pKsPi01Pi02[4];
2561 for(int i = 0; i != 4; i++){
2562 pD[i] = Ks[i]+Pi02[i]+Pi01[i]+Pi03[i];
2563 pKsPi01[i] =Ks[i]+Pi01[i];
2564 pPi01Pi02[i] = Pi01[i] + Pi02[i];
2565 pKsPi01Pi02[i] = pKsPi01[i] + Pi02[i];
2566 }
2567
2568 double sD, sKs, sPi01, sPi02, sPi03, sKsPi01,sPi01Pi02, sKsPi01Pi02;
2569 sKs = SCADot(Ks,Ks);
2570 sPi01 = SCADot(Pi01,Pi01);
2571 sPi02 = SCADot(Pi02,Pi02);
2572 sPi03 = SCADot(Pi03,Pi03);
2573 sD = SCADot(pD,pD);
2574 sKsPi01 = SCADot(pKsPi01,pKsPi01);
2575 sPi01Pi02 = SCADot(pPi01Pi02, pPi01Pi02);
2576 sKsPi01Pi02 = SCADot(pKsPi01Pi02,pKsPi01Pi02);
2577
2578 double t1KsPi01[4], t1K1[4];
2579 calt1(Ks, Pi01,t1KsPi01);
2580 calt1(pKsPi01, Pi02, t1K1);
2581 double B[3];
2582 B[0] = barrier(ang1, sD, sKsPi01Pi02, sPi03, rD2, mD*mD);
2583 B[1] = barrier(ang2, sKsPi01Pi02, sKsPi01, sPi02, rRes2, mass1sq);
2584 B[2] = barrier(ang3, sKsPi01, sKs, sPi01, rRes2, mass2sq);
2585 //printf("B0 = %.10f, B1 = %.10f, B2 = %.10f\n", B[0], B[1], B[2]);
2586
2587 double propagtr1[2], propagtr2[2];
2588
2589 if(ang3 == 0){
2590 propagatorRBW(mass1sq, mass1, width1, sKsPi01Pi02, sPi01Pi02, sKs, rRes2, ang2, propagtr1);
2591 Fvector(sPi01Pi02,-0.07, propagtr2, sp0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 );
2592 }else if(ang3 == 1){
2593 propagatorRBW(mass1sq, mass1, width1, sKsPi01Pi02, sKsPi01, sPi02, rRes2, ang2, propagtr1);
2594 propagatorRBW(mass2sq, mass2, width2, sKsPi01, sKs, sPi01, rRes2, ang3, propagtr2);
2595 }
2596 Com_Multi(propagtr1, propagtr2, propagator);
2597 //printf("propagator = %.10f + i %0.1f\n", propagator[0], propagator[1]);
2598
2599 double temp_PDF = 0;
2600 if(ang2 == 1){
2601 for(int a=0; a<4; a++){
2602 temp_PDF += G[a][a]*Pi02[a]*t1KsPi01[a];
2603 //temp_PDF += G[a][a]*t1K1[a]*t1KsPi01[a];
2604 }
2605 tmp_PDF = B[0]*B[1]*B[2]*temp_PDF;
2606 }else if(ang2 == 0){ //K(1460) -> Ks (pipi)S
2607 tmp_PDF = B[0];
2608 }
2609 //printf("temp_PDF = %.10f\n", temp_PDF); //correct
2610 //printf("tmp_PDF = %.10f\n", tmp_PDF);
2611
2612
2613}
2614
2615
2616void EvtD0ToKSpi0pi0pi0::DtoaP( double Ks_e, double Ks_px, double Ks_py, double Ks_pz,
2617 double Pi01_e, double Pi01_px, double Pi01_py, double Pi01_pz,
2618 double Pi02_e, double Pi02_px, double Pi02_py, double Pi02_pz,
2619 double Pi03_e, double Pi03_px, double Pi03_py, double Pi03_pz,
2620 double mass1, double width1, int ang1, int ang2, int g0, double propagator[], double& tmp_PDF,
2621 double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10,
2622 double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10)
2623{
2624 double Ks[4] = {Ks_e, Ks_px, Ks_py, Ks_pz};
2625 double Pi01[4]= {Pi01_e, Pi01_px, Pi01_py, Pi01_pz};
2626 double Pi02[4]= {Pi02_e, Pi02_px, Pi02_py, Pi02_pz};
2627 double Pi03[4]= {Pi03_e, Pi03_px, Pi03_py, Pi03_pz};
2628
2629 double mass1sq = mass1*mass1;
2630 double pD[4], pPi0_123[4], pPi01Pi02[4];
2631 for(int i = 0; i < 4; i++){
2632 pPi01Pi02[i] =Pi01[i]+Pi02[i];
2633 pPi0_123[i] = Pi01[i]+Pi02[i]+Pi03[i];
2634 pD[i] = Ks[i]+Pi02[i]+Pi01[i]+Pi03[i];
2635
2636 }
2637 double sPi02,sPi01,sKs,sPi03,sPi0_123, sPi01Pi02, sD;
2638 sKs = SCADot(Ks,Ks);
2639 sPi01 = SCADot(Pi01,Pi01);
2640 sPi02 = SCADot(Pi02,Pi02);
2641 sPi03 = SCADot(Pi03,Pi03);
2642 sPi0_123 = SCADot(pPi0_123,pPi0_123);
2643 sPi01Pi02 =SCADot(pPi01Pi02,pPi01Pi02);
2644 sD = SCADot(pD,pD);
2645
2646 double B[2];
2647 B[0] = barrier(ang1, sD, sKs, sPi0_123, rD2, mD*mD);
2648 B[1] = barrier(ang2, sPi0_123, sPi01Pi02, sPi03, rRes2, mass1sq);
2649
2650 double pro1[2], pro2[2];
2651 propagatorRBW(mass1sq, mass1, width1, sPi0_123, sPi01Pi02, sPi03, rRes2, ang2, pro1);
2652 if( g0 == 0){
2653 PiPiSWAVE(sPi01Pi02, sPi01, sPi02, pro2);
2654 }else if(g0 == 1){
2655 //Fvector(sPi01Pi02,-0.07,Fv1,Kmtx[0],Kmtx[1],Kmtx[2],Kmtx[3],Kmtx[4],Kmtx[5],Kmtx[6],Kmtx[7],Kmtx[8],Kmtx[9],Kmtx[10],Kmtx[11],Kmtx[12],Kmtx[13],Kmtx[14],Kmtx[15],Kmtx[16],Kmtx[17],Kmtx[18],Kmtx[19],Kmtx[20]);
2656 Fvector(sPi01Pi02,-0.07,pro2,sp0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 );
2657
2658 }else if(g0 == 2){
2659 propagatorsigma500(sPi01Pi02, sPi01, sPi02, pro2);
2660 }else if(g0 == 3){
2661 pro2[0] = 1; pro2[1] = 0;
2662
2663 }
2664 Com_Multi(pro1, pro2, propagator);
2665 double t1D[4];
2666 double t1_3Pi0[4];
2667 calt1(pPi01Pi02, Pi03,t1_3Pi0);
2668 calt1(Ks, pPi0_123, t1D);
2669
2670 double temp_PDF = 0;
2671 if(ang2==1){
2672 for(int a=0; a<4; a++){
2673 temp_PDF += G[a][a]*t1D[a]*t1_3Pi0[a];
2674 }
2675 tmp_PDF = B[0]*B[1]*temp_PDF;
2676 }else if(ang2 == 0){
2677 tmp_PDF = B[0]*B[1];
2678 }
2679}
2680
2681
2682
2683
2684
2685void EvtD0ToKSpi0pi0pi0::kpiSwave(double m2,
2686 double akeMag, double a32Mag, double akePhs, double a32Phs, double propagator[])
2687{
2688// double pKsPi01[4], pPi02Pi03[4];
2689// for(int i = 0; i != 4; i++){
2690// pKsPi01[i] = Ks[i]+Pi01[i];
2691// pPi02Pi03[i] = Pi02[i] + Pi03[i];
2692// }
2693//
2694// double m2 = SCADot(pKsPi01, pKsPi01);
2695 double g1 = 0.31072;
2696 double g2 = -0.02323;
2697
2698 const double mass_Kaon = 0.49368;
2699 double C110 =0.79299, C111 = -0.15099, C112 = 0.00811;
2700 double C120 =0.15040, C121 = -0.038266, C122 = 0.0022596;
2701 double C220 =0.17054, C221 = -0.0219, C222 = 0.00085655;
2702 double s1 = 1.7919;
2703 double sn = mass_Kaon*mass_Kaon + mass_Pion*mass_Pion;
2704 double sb = m2/sn-1;
2705
2706 double km11 = ((m2-0.23)/sn)*(g1*g1/(s1-m2)+C110+C111*sb+C112*sb*sb);
2707 double km22 = ((m2-0.23)/sn)*(g2*g2/(s1-m2)+C220+C221*sb+C222*sb*sb);
2708 double km12 = ((m2-0.23)/sn)*(g1*g2/(s1-m2)+C120+C121*sb+C122*sb*sb);
2709 double km21 = km12;
2710
2711
2712 double D110 =-0.22147, D111 = 0.026637, D112 = -0.00092057;
2713 double km3 = ((m2-0.27)/sn)*(D110+D111*sb+D112*sb*sb);
2714
2715 double sRhoKpi = ((1.)-((0.125392))/(m2))*((1.)-((0.401002))/(m2));
2716 double sRhoKEtap = ((1.)-((0.21528))/(m2))*((1.)-((2.106379))/(m2));
2717 double rhoKpi[2], rhoKEtap[2];
2718
2719 if(sRhoKpi>0){
2720 rhoKpi[0] = sqrt(sRhoKpi);
2721 rhoKpi[1] = 0;
2722 }else{
2723 rhoKpi[0] = 0;
2724 rhoKpi[1] = sqrt((-1.)*sRhoKpi);
2725 }
2726
2727
2728 if(sRhoKEtap>0){
2729 rhoKEtap[0] = sqrt(sRhoKEtap);
2730 rhoKEtap[1] = 0;
2731 }else{
2732 rhoKEtap[0] = 0;
2733 rhoKEtap[1] = sqrt((-1.)*sRhoKEtap);
2734
2735 }
2736
2737 double Re[2] = {1.,0.};
2738 double Im[2] = {0.,1.};
2739
2740
2741 double F32[2];
2742 double tmp32[2];
2743
2744 tmp32[0] = 1. - km3*rhoKpi[0];
2745 tmp32[1] = km3*rhoKpi[1];
2746
2747 Com_Divide(Re, tmp32, F32);
2748
2749 double detK = km11*km22 - km12*km21;
2750
2751 double D[2], del[2];
2752 double rho12[2], tmp1[2], rho1k[2], rho2k[2], tmp2[2], tmp3[2];
2753 D[0] = detK; D[1] = 0;
2754 Com_Multi(rhoKpi, rhoKEtap, rho12);
2755 Com_Multi(rho12, D, tmp1);
2756
2757 double K11[2] = {km11,0}; double K22[2] = {km22, 0}; double K12[2] = {km12,0};
2758 Com_Multi(rhoKpi, K11, rho1k);
2759 Com_Multi(rhoKEtap, K22, rho2k);
2760 tmp2[0] = rho1k[0] + rho2k[0]; tmp2[1] = rho1k[1] + rho2k[1];
2761 Com_Multi(Im, tmp2, tmp3);
2762
2763 del[0] = 1. - tmp1[0] - tmp3[0];
2764 del[1] = 0. - tmp1[1] - tmp3[1];
2765
2766 double thoDk[2], tmpRD[2], tmp11[2];
2767 double T11[2], T12[2];
2768 Com_Multi(rhoKEtap, D, thoDk);
2769 Com_Multi(Im, thoDk, tmpRD);
2770 tmp11[0] = km11 - tmpRD[0];
2771 tmp11[1] = 0. - tmpRD[1];
2772 Com_Divide(tmp11, del, T11);
2773 Com_Divide(K12, del, T12);
2774
2775 double alphaKetap[2], alpha32[2];
2776 alphaKetap[0] = akeMag*cos(akePhs); alphaKetap[1] = akeMag*sin(akePhs);
2777 alpha32[0] = a32Mag*cos(a32Phs); alpha32[1] = a32Mag*sin(a32Phs);
2778
2779 double F12[2], Fketap[2];
2780 Com_Multi(alphaKetap, T12, Fketap);
2781 F12[0] = T11[0] + Fketap[0];
2782 F12[1] = T11[1] + Fketap[1];
2783
2784 double amp32[2];
2785 Com_Multi(alpha32, F32, amp32);
2786 propagator[0] = F12[0] + amp32[0];
2787 propagator[1] = F12[1] + amp32[1];
2788
2789}
2790
2791
2792void EvtD0ToKSpi0pi0pi0::DtoKPi( double Ks_e, double Ks_px, double Ks_py, double Ks_pz,
2793 double Pi01_e, double Pi01_px, double Pi01_py, double Pi01_pz,
2794 double Pi02_e, double Pi02_px, double Pi02_py, double Pi02_pz,
2795 double Pi03_e, double Pi03_px, double Pi03_py, double Pi03_pz,
2796 int g0, int g1, double propagator[], double& tmp_PDF,
2797 double sp0, double f1, double f2, double f3, double f4, double f5, double f6, double f7, double f8, double f9, double f10,
2798 double b1, double b2, double b3, double b4, double b5, double b6, double b7, double b8, double b9, double b10,
2799 double akeMag, double a32Mag, double akePhs, double a32Phs)
2800{
2801 double Ks[4] = {Ks_e, Ks_px, Ks_py, Ks_pz};
2802 double Pi01[4]= {Pi01_e, Pi01_px, Pi01_py, Pi01_pz};
2803 double Pi02[4]= {Pi02_e, Pi02_px, Pi02_py, Pi02_pz};
2804 double Pi03[4]= {Pi03_e, Pi03_px, Pi03_py, Pi03_pz};
2805
2806 double pKsPi01[4], pPi02Pi03[4];
2807 for(int i = 0; i != 4; i++){
2808 pKsPi01[i] =Ks[i]+Pi01[i];
2809 pPi02Pi03[i] = Pi02[i] + Pi03[i];
2810 }
2811
2812 double sKs, sPi01, sPi02, sPi03, sKsPi01, sPi02Pi03;
2813 sKs = SCADot(Ks,Ks);
2814 sPi01 = SCADot(Pi01,Pi01);
2815 sPi02 = SCADot(Pi02,Pi02);
2816 sPi03 = SCADot(Pi03,Pi03);
2817 sKsPi01 = SCADot(pKsPi01,pKsPi01);
2818 sPi02Pi03 = SCADot(pPi02Pi03, pPi02Pi03);
2819
2820
2821 double propagtr1[2], propagtr2[2];
2822 if(g1 == 0){
2823 KPiSLASS(sKsPi01, sKs, sPi01, propagtr1);
2824 }else if(g1 == 1){
2825 kpiSwave(sKsPi01, akeMag, a32Mag, akePhs, a32Phs, propagtr1);
2826 }
2827
2828 if(g0 == 0){
2829 propagtr2[0] = 1; propagtr2[1] = 0;
2830 }else if(g0 == 1){
2831 PiPiSWAVE(sPi02Pi03, sPi02, sPi03, propagtr2);
2832 }else if(g0 == 2){
2833 // Fvector(sPi02Pi03,-0.07,propagtr2, Kmtx[0],Kmtx[1],Kmtx[2],Kmtx[3],Kmtx[4],Kmtx[5],Kmtx[6],Kmtx[7],Kmtx[8],Kmtx[9],Kmtx[10],Kmtx[11],Kmtx[12],Kmtx[13],Kmtx[14],Kmtx[15],Kmtx[16],Kmtx[17],Kmtx[18],Kmtx[19],Kmtx[20]);
2834 Fvector(sPi02Pi03,-0.07, propagtr2, sp0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,b1,b2,b3,b4,b5,b6,b7,b8,b9,b10 );
2835
2836 }
2837 Com_Multi(propagtr1, propagtr2, propagator);
2838
2839 tmp_PDF = 1;
2840}
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
double P(RecMdcKalTrack *trk)
double mass
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
TFile * f1
TF1 * g1
int ID[no]
character *LEPTONflag integer iresonances real zeta5 real a0
EvtComplex exp(const EvtComplex &c)
double K1270_width[]
double K1400_width[]
double a1_width[]
*******INTEGER m_nBinMax INTEGER m_NdiMax !No of bins in histogram for cell exploration division $ !Last vertex $ !Last active cell $ !Last cell in buffer $ !No of sampling when dividing cell $ !No of function total $ !Flag for random ceel for $ !Flag for type of for WtMax $ !Flag which decides whether vertices are included in the sampling $ entire domain is hyp !Maximum effective eevents per saves r n generator level $ !Flag for chat level in !Latex Output unit
Definition FoamA.h:90
const double mpi
Definition Gam4pikp.cxx:47
XmlRpcServer s
****INTEGER imax DOUBLE PRECISION m_pi *DOUBLE PRECISION m_amfin DOUBLE PRECISION m_Chfin DOUBLE PRECISION m_Xenph DOUBLE PRECISION m_sinw2 DOUBLE PRECISION m_GFermi DOUBLE PRECISION m_MfinMin DOUBLE PRECISION m_ta2 INTEGER m_out INTEGER m_KeyFSR INTEGER m_KeyQCD *COMMON c_Semalib $ !copy of input $ !CMS energy $ !beam mass $ !final mass $ !beam charge $ !final charge $ !smallest final mass $ !Z mass $ !Z width $ !EW mixing angle $ !Gmu Fermi $ alphaQED at q
Definition KKsem.h:33
TCrossPart * CS
Definition Mcgpj.cxx:51
***************************************************************************************Pseudo Class RRes *****************************************************************************************Parameters and physical constants **Maarten sept ************************************************************************DOUBLE PRECISION xsmu **************************************************************************PARTICLE DATA ** Rho(770) and Omega(782) are taken from CMD-2 F_pi fit *(hep-ex/9904027)
TTree * t
Definition binning.cxx:23
void getName(std::string &name)
void decay(EvtParticle *p)
EvtDecayBase * clone()
void checkSpinParent(EvtSpinType::spintype sp)
void setProbMax(double prbmx)
void checkNDaug(int d1, int d2=-1)
EvtId * getDaugs()
void checkNArg(int a1, int a2=-1, int a3=-1, int a4=-1)
void setProb(double prob)
static int getStdHep(EvtId id)
Definition EvtPDL.hh:56
EvtId getId() const
const EvtVector4R & getP4() const
EvtParticle * getDaug(int i)
double initializePhaseSpace(int numdaughter, EvtId *daughters, double poleSize=-1., int whichTwo1=0, int whichTwo2=1)
double get(int i) const
double double * m2
Definition qcdloop1.h:75
const double b
Definition slope.cxx:9