17 g_mag[0]= 100.0; g_pha[0]= 0.0;
18 g_mag[1]= 7.95507 ; g_pha[1]= -0.0687407;
19 g_mag[2]= 37.5559 ; g_pha[2]= -1.74946 ;
20 g_mag[3]= 61.2172 ; g_pha[3]= 2.98079 ;
21 g_mag[4]= 187.79 ; g_pha[4]= 2.64471 ;
22 g_mag[5]= 385.474 ; g_pha[5]= -0.137107 ;
23 g_mag[6]= 0.330788; g_pha[6]= 0.268133 ;
24 g_mag[7]= 127.158 ; g_pha[7]= -2.47773 ;
25 g_mag[8]= 339.914 ; g_pha[8]= 2.22856 ;
26 g_mag[9]= 0.320888; g_pha[9]= -2.6194 ;
27 g_mag[10]=0.366283; g_pha[10]=-0.26867 ;
28 g_mag[11]=86.0865 ; g_pha[11]=-2.49649 ;
29 g_mag[12]=6.1541 ; g_pha[12]=-1.18299 ;
30 g_mag[13]=56.6067 ; g_pha[13]=0.142977 ;
31 g_mag[14]=92.3073 ; g_pha[14]=-2.15881 ;
32 g_mag[15]=10.5885 ; g_pha[15]=-3.03166 ;
33 g_mag[16]=8.36765 ; g_pha[16]=1.8417 ;
34 g_mag[17]=6.56437 ; g_pha[17]=-2.93087 ;
35 g_mag[18]=15.7197 ; g_pha[18]=0.96925 ;
36 g_mag[19]=21.4195 ; g_pha[19]=-1.23701 ;
37 g_mag[20]=56.8867 ; g_pha[20]=-0.385837 ;
38 g_mag[21]=231.626 ; g_pha[21]=2.14842 ;
39 g_mag[22]=2938.45 ; g_pha[22]=-0.693491 ;
40 g_mag[23]=7252.7 ; g_pha[23]=2.23659 ;
41 g_mag[24]=5165.87 ; g_pha[24]=0.913557 ;
42 g_mag[25]=11508.6 ; g_pha[25]=-1.07187 ;
43 g_mag[26]=2461.86 ; g_pha[26]=1.8709 ;
44 g_mag[27]=8757.75 ; g_pha[27]=2.40756 ;
45 g_mag[28]=19.7413 ; g_pha[28]=-1.0753 ;
46 g_mag[29]=66.3826 ; g_pha[29]=2.34666 ;
48 for(
int i=0; i<30; i++){
50 fitpara.push_back(ctemp);
67 for(
int i=0; i<4; i++){
68 for(
int j=0; j<4; j++){
69 for(
int k=0; k<4; k++){
70 for(
int l=0; l<4; l++){
71 if(i==j || i==k || i==l || j==k || j==l || k==l){
72 epsilon_uvmn.push_back(0.0);
74 if(i==0 && j==1 && k==2 && l==3) epsilon_uvmn.push_back(1.0);
75 if(i==0 && j==1 && k==3 && l==2) epsilon_uvmn.push_back(-1.0);
76 if(i==0 && j==2 && k==1 && l==3) epsilon_uvmn.push_back(-1.0);
77 if(i==0 && j==2 && k==3 && l==1) epsilon_uvmn.push_back(1.0);
78 if(i==0 && j==3 && k==1 && l==2) epsilon_uvmn.push_back(1.0);
79 if(i==0 && j==3 && k==2 && l==1) epsilon_uvmn.push_back(-1.0);
81 if(i==1 && j==0 && k==2 && l==3) epsilon_uvmn.push_back(-1.0);
82 if(i==1 && j==0 && k==3 && l==2) epsilon_uvmn.push_back(1.0);
83 if(i==1 && j==2 && k==0 && l==3) epsilon_uvmn.push_back(1.0);
84 if(i==1 && j==2 && k==3 && l==0) epsilon_uvmn.push_back(-1.0);
85 if(i==1 && j==3 && k==0 && l==2) epsilon_uvmn.push_back(-1.0);
86 if(i==1 && j==3 && k==2 && l==0) epsilon_uvmn.push_back(1.0);
88 if(i==2 && j==0 && k==1 && l==3) epsilon_uvmn.push_back(1.0);
89 if(i==2 && j==0 && k==3 && l==1) epsilon_uvmn.push_back(-1.0);
90 if(i==2 && j==1 && k==0 && l==3) epsilon_uvmn.push_back(-1.0);
91 if(i==2 && j==1 && k==3 && l==0) epsilon_uvmn.push_back(1.0);
92 if(i==2 && j==3 && k==0 && l==1) epsilon_uvmn.push_back(1.0);
93 if(i==2 && j==3 && k==1 && l==0) epsilon_uvmn.push_back(-1.0);
95 if(i==3 && j==0 && k==1 && l==2) epsilon_uvmn.push_back(-1.0);
96 if(i==3 && j==0 && k==2 && l==1) epsilon_uvmn.push_back(1.0);
97 if(i==3 && j==1 && k==0 && l==2) epsilon_uvmn.push_back(1.0);
98 if(i==3 && j==1 && k==2 && l==0) epsilon_uvmn.push_back(-1.0);
99 if(i==3 && j==2 && k==0 && l==1) epsilon_uvmn.push_back(-1.0);
100 if(i==3 && j==2 && k==1 && l==0) epsilon_uvmn.push_back(1.0);
150vector<double> D0To2pip2pim::sum_tensor(vector<double> pa, vector<double> pb) {
151 if(pa.size()!=pb.size()){
152 cout<<
"error sum tensor"<<endl;
155 vector<double> temp; temp.clear();
156 for(
int i=0; i<pa.size(); i++){
157 double sum = pa[i] + pb[i];
163double D0To2pip2pim::contract_11_0(vector<double> pa, vector<double> pb){
164 if(pa.size()!=pb.size() || pa.size()!=4) {
165 cout<<
"error contract 11->0"<<endl;
168 double temp = pa[3]*pb[3] - pa[0]*pb[0] - pa[1]*pb[1] - pa[2]*pb[2];
172vector<double> D0To2pip2pim::contract_21_1(vector<double> pa, vector<double> pb){
173 if(pa.size()!=16 || pb.size()!=4) {
174 cout<<
"error contract 21->1"<<endl;
179 for(
int i=0; i<4; i++){
180 for(
int j=0; j<4; j++){
184 g_uv.push_back(-1.0);
190 vector<double> temp; temp.clear();
191 for(
int i=0; i<4; i++){
193 for(
int j=0; j<4; j++){
195 sum += pa[idx]*pb[j]*g_uv[4*j+j];
202double D0To2pip2pim::contract_22_0(vector<double> pa, vector<double> pb){
203 if(pa.size()!=pb.size() || pa.size()!=16) {
204 cout<<
"error contract 22->0"<<endl;
209 for(
int i=0; i<4; i++){
210 for(
int j=0; j<4; j++){
214 g_uv.push_back(-1.0);
221 for(
int i=0; i<4; i++){
222 for(
int j=0; j<4; j++){
224 temp += pa[idx]*pb[idx]*g_uv[4*i+i]*g_uv[4*j+j];
230vector<double> D0To2pip2pim::contract_31_2(vector<double> pa, vector<double> pb){
231 if(pa.size()!=64 || pb.size()!=4) {
232 cout<<
"error contract 31->2"<<endl;
237 for(
int i=0; i<4; i++){
238 for(
int j=0; j<4; j++){
242 g_uv.push_back(-1.0);
248 vector<double> temp; temp.clear();
249 for(
int i=0; i<16; i++){
251 for(
int j=0; j<4; j++){
253 sum += pa[idx]*pb[j]*g_uv[4*j+j];
260vector<double> D0To2pip2pim::contract_41_3(vector<double> pa, vector<double> pb){
261 if(pa.size()!=256|| pb.size()!=4) {
262 cout<<
"error contract 41->3"<<endl;
267 for(
int i=0; i<4; i++){
268 for(
int j=0; j<4; j++){
272 g_uv.push_back(-1.0);
278 vector<double> temp; temp.clear();
279 for(
int i=0; i<64; i++){
281 for(
int j=0; j<4; j++){
283 sum += pa[idx]*pb[j]*g_uv[4*j+j];
290vector<double> D0To2pip2pim::contract_42_2(vector<double> pa, vector<double> pb){
291 if(pa.size()!=256|| pb.size()!=16) {
292 cout<<
"error contract 42->2"<<endl;
297 for(
int i=0; i<4; i++){
298 for(
int j=0; j<4; j++){
302 g_uv.push_back(-1.0);
308 vector<double> temp; temp.clear();
309 for(
int i=0; i<16; i++){
311 for(
int j=0; j<4; j++){
312 for(
int k=0; k<4; k++){
313 int idxa = i*16+j*4+k;
315 sum += pa[idxa] * pb[idxb] * g_uv[4*j+j] * g_uv[4*k+k];
323vector<double> D0To2pip2pim::contract_22_2(vector<double> pa, vector<double> pb){
324 if(pa.size()!=16|| pb.size()!=16) {
325 cout<<
"error contract 42->2"<<endl;
330 for(
int i=0; i<4; i++){
331 for(
int j=0; j<4; j++){
335 g_uv.push_back(-1.0);
341 vector<double> temp; temp.clear();
342 for(
int i=0; i<4; i++){
343 for(
int j=0; j<4; j++){
345 for(
int k=0; k<4; k++){
348 sum += pa[idxa] * pb[idxb] * g_uv[4*k+k];
357vector<double> D0To2pip2pim::OrbitalTensors(vector<double> pa, vector<double> pb, vector<double> pc,
double r,
int rank)
359 if(pa.size()!=4 || pb.size()!=4 || pc.size()!=4) {
360 cout<<
"Error: pa, pb, pc"<<endl;
364 cout<<
"Error: L<0 !!!"<<endl;
369 for(
int i=0; i<4; i++){
370 for(
int j=0; j<4; j++){
374 g_uv.push_back(-1.0);
382 vector<double> mr; mr.clear();
384 for(
int i=0; i<4; i++){
385 double temp = pb[i] - pc[i];
390 double msa = contract_11_0(pa, pa);
391 double msb = contract_11_0(pb, pb);
392 double msc = contract_11_0(pc, pc);
395 double top = msa + msb - msc;
396 double Q2abc = top*top/(4.0*msa) - msb;
399 double Q_0 = 0.197321f/r;
400 double Q_02 = Q_0*Q_0;
401 double Q_04 = Q_02*Q_02;
405 double Q4abc = Q2abc*Q2abc;
409 double mB1 = sqrt(2.0f/(Q2abc + Q_02));
410 double mB2 = sqrt(13.0f/(Q4abc + (3.0f*Q_02)*Q2abc + 9.0f*Q_04));
415 vector<double> proj_uv; proj_uv.clear();
416 for(
int i=0; i<4; i++){
417 for(
int j=0; j<4; j++){
419 double temp = -g_uv[idx] + pa[i]*pa[j]/msa;
420 proj_uv.push_back(temp);
427 vector<double>
t;
t.clear();
433 vector<double> t_u; t_u.clear();
434 vector<double> Bt_u; Bt_u.clear();
435 for(
int i=0; i<4; i++){
437 for(
int j=0; j<4; j++){
439 temp += -proj_uv[idx]*mr[j]*g_uv[j*4+j];
442 Bt_u.push_back(temp*mB1);
444 if(rank==1)
return Bt_u;
446 double t_u2 = contract_11_0(t_u,t_u);
448 vector<double> Bt_uv; Bt_uv.clear();
449 for(
int i=0; i<4; i++){
450 for(
int j=0; j<4; j++){
452 double temp = t_u[i]*t_u[j] + (1.0/3.0)*proj_uv[idx]*t_u2;
453 Bt_uv.push_back(temp*mB2);
456 if(rank==2)
return Bt_uv;
460 cout<<
"rank>2: please add it by yourself!!!"<<endl;
466vector<double> D0To2pip2pim::ProjectionTensors(vector<double> pa,
int rank)
469 cout<<
"Error: pa"<<endl;
473 cout<<
"Error: L<0 !!!"<<endl;
478 for(
int i=0; i<4; i++){
479 for(
int j=0; j<4; j++){
483 g_uv.push_back(-1.0);
490 double msa = contract_11_0(pa, pa);
493 vector<double> proj_uv; proj_uv.clear();
494 for(
int i=0; i<4; i++){
495 for(
int j=0; j<4; j++){
497 double temp = -g_uv[idx] + pa[i]*pa[j]/msa;
498 proj_uv.push_back(temp);
505 vector<double>
t;
t.clear();
514 vector<double> proj_uvmn; proj_uvmn.clear();
515 for(
int i=0; i<4; i++){
516 for(
int j=0; j<4; j++){
517 for(
int k=0; k<4; k++){
518 for(
int l=0; l<4; l++){
520 int idx1_1 = 4*i + k;
521 int idx1_2 = 4*i + l;
522 int idx1_3 = 4*i + j;
524 int idx2_1 = 4*j + l;
525 int idx2_2 = 4*j + k;
526 int idx2_3 = 4*k + l;
528 double temp = (1.0/2.0)*(proj_uv[idx1_1]*proj_uv[idx2_1] + proj_uv[idx1_2]*proj_uv[idx2_2]) - (1.0/3.0)*proj_uv[idx1_3]*proj_uv[idx2_3];
529 proj_uvmn.push_back(temp);
538 cout<<
"rank>2: please add it by yourself!!!"<<endl;
542double D0To2pip2pim::fundecaymomentum(
double mr2,
double m1_2,
double m2_2){
543 double mr = sqrt(mr2);
544 double poly = mr2*mr2 + m1_2*m1_2 + m2_2*m2_2 - 2*m1_2*mr2 -2*m2_2*mr2 -2*m1_2*m2_2;
545 double ret = sqrt(poly)/(2*mr);
552complex<double> D0To2pip2pim::breitwigner(
double mx2,
double mr,
double wr)
558 double diff = mr2-mx2;
559 double denom = diff*diff + wr*wr*mr2;
565 output_x = diff/denom;
566 output_y = wr*mr/denom;
577double D0To2pip2pim::h(
double m,
double q){
578 double h = 2.0/math_pi*
q/m*log((m+2.0*
q)/(2.0*mass_Pion));
582double D0To2pip2pim::dh(
double m0,
double q0){
583 double dh = h(m0,q0)*(1.0/(8.0*q0*q0)-1.0/(2.0*m0*m0))+1.0/(2.0*math_pi*m0*m0);
587double D0To2pip2pim::f(
double m0,
double sx,
double q0,
double q){
589 double f = m0*m0/(q0*q0*q0)*(
q*
q*(h(m,
q)-h(m0,q0))+(m0*m0-sx)*q0*q0*dh(m0,q0));
593double D0To2pip2pim::d(
double m0,
double q0){
594 double d = 3.0/math_pi*mass_Pion*mass_Pion/(q0*q0)*log((m0+2.0*q0)/(2.0*mass_Pion)) + m0/(2.0*math_pi*q0) - (mass_Pion*mass_Pion*m0)/(math_pi*q0*q0*q0);
598double D0To2pip2pim::fundecaymomentum2(
double mr2,
double m1_2,
double m2_2){
599 double mr = sqrt(mr2);
600 double poly = mr2*mr2 + m1_2*m1_2 + m2_2*m2_2 - 2*m1_2*mr2 -2*m2_2*mr2 -2*m1_2*m2_2;
601 double ret = poly/(4.0f*mr2);
607double D0To2pip2pim::wid(
double mass,
double sa,
double sb,
double sc,
double r,
int l){
611 double q = fundecaymomentum2(sa,sb,sc);
612 double q0 = fundecaymomentum2(sa0,sb,sc);
617 if(l == 1) F = sqrt((1.0+z0)/(1.0+z));
618 if(l == 2) F = sqrt((9.0+3.0*z0+z0*z0)/(9.0+3.0*z+z*z));
619 if(l == 3) F = sqrt((225.0+45.0*z0+6.0*z0*z0+z0*z0*z0)/(225.0+45.0*z+6.0*z*z+z*z*z));
620 if(l == 4) F = sqrt((11025.0+1575.0*z0+135.0*z0*z0+10.0*z0*z0*z0+z0*z0*z0*z0)/(11025.0+1575.0*z+135.0*z*z+10.0*z*z*z+z*z*z*z));
621 double t = sqrt(
q/q0);
624 for(i=0; i<(2*l+1); i++) {
627 widm *= (
mass/m*F*F);
632complex<double> D0To2pip2pim::GS(
double mx2,
double mr,
double wr,
double m1_2,
double m2_2,
double r,
int l){
635 double q = fundecaymomentum(mx2, m1_2, m2_2);
636 double q0 = fundecaymomentum(mr2, m1_2, m2_2);
637 double numer = 1.0+d(mr,q0)*wr/mr;
638 double denom_real = mr2-mx2+wr*
f(mr,mx2,q0,
q);
639 double denom_imag = mr*wr*wid(mr,mx2,m1_2,m2_2,r,l);
641 double denom = denom_real*denom_real+denom_imag*denom_imag;
642 double output_x = denom_real*numer/denom;
643 double output_y = denom_imag*numer/denom;
649complex<double> D0To2pip2pim::RBW(
double mx2,
double mr,
double wr,
double m1_2,
double m2_2,
double r,
int l){
650 double mx = sqrt(mx2);
652 double denom_real = mr2-mx2;
653 double denom_imag = 0;
654 if(m1_2>0 && m2_2>0){
655 denom_imag = mr*wr*wid(mr,mx2,m1_2,m2_2,r,l);
660 double denom = denom_real*denom_real+denom_imag*denom_imag;
661 double output_x = denom_real/denom;
662 double output_y = denom_imag/denom;
669double D0To2pip2pim::widT1260(
int i,
double g1,
double g2){
671 double wid1[300] = { 0.00100302, 0.0069383, 0.0223132, 0.0504984, 0.093998, 0.154569, 0.233464, 0.331844, 0.450141, 0.589068,
672 0.748192, 0.928578, 1.13001, 1.35227, 1.59548, 1.86005, 2.14633, 2.45252, 2.78199, 3.13055,
673 3.50351, 3.89773, 4.31274, 4.75409, 5.21133, 5.69991, 6.20735, 6.74638, 7.30128, 7.8858,
674 8.50289, 9.14654, 9.82395, 10.5209, 11.2643, 12.0436, 12.8585, 13.692, 14.598, 15.5291,
675 16.5158, 17.5337, 18.6289, 19.7599, 20.9847, 22.2557, 23.5959, 25.0095, 26.5123, 28.0789,
676 29.7542, 31.5143, 33.3769, 35.3462, 37.3911, 39.5988, 41.874, 44.2815, 46.7975, 49.401,
677 52.0553, 54.7753, 57.5932, 60.4542, 63.3049, 66.0665, 68.8987, 71.6282, 74.2613, 76.8713,
678 79.3528, 81.722, 84.1212, 86.227, 88.4243, 90.3478, 92.2478, 94.1483, 95.8541, 97.5086,
679 99.0092, 100.48, 101.861, 103.153, 104.338, 105.576, 106.696, 107.647, 108.761, 109.725,
680 110.625, 111.529, 112.426, 113.01, 113.877, 114.647, 115.086, 115.856, 116.533, 117.076,
681 117.646, 118.25, 118.653, 119.023, 119.554, 119.958, 120.384, 121.036, 121.402, 121.686,
682 122.44, 122.592, 122.979, 123.39, 123.819, 123.957, 124.459, 124.681, 125.071, 125.405,
683 125.769, 125.978, 126.542, 126.817, 127.017, 127.292, 127.765, 127.989, 128.542, 128.66,
684 128.923, 129.094, 129.441, 129.716, 130.23, 130.506, 130.658, 131.12, 131.308, 131.579,
685 131.994, 132.28, 132.594, 132.79, 133.107, 133.589, 133.935, 134.242, 134.484, 134.765,
686 135.208, 135.58, 135.922, 136.236, 136.545, 136.949, 137.216, 137.503, 137.994, 138.35,
687 138.62, 138.912, 139.413, 139.831, 140.137, 140.478, 141, 141.3, 141.807, 142.291,
688 142.864, 143.315, 143.678, 144.215, 144.587, 145.122, 145.8, 145.885, 146.583, 147.226,
689 147.661, 148.187, 148.698, 149.227, 149.832, 150.548, 151.122, 151.674, 152.074, 152.666,
690 153.295, 153.899, 154.661, 155.364, 155.908, 156.495, 157.36, 157.719, 158.533, 159.287,
691 159.79, 160.654, 161.257, 161.93, 162.437, 163.468, 163.957, 164.631, 165.414, 166.203,
692 166.738, 167.61, 168.453, 169.101, 170.111, 170.333, 171.123, 171.958, 173.018, 173.663,
693 174.213, 175.241, 175.579, 176.435, 177.291, 178.071, 178.969, 179.635, 180.118, 181.078,
694 182.007, 182.73, 183.282, 184.161, 184.981, 185.695, 186.506, 187.16, 187.996, 188.439,
695 189.416, 190.104, 190.759, 191.786, 192.331, 193.318, 193.836, 194.981, 195.634, 196.231,
696 196.832, 197.835, 198.608, 199.273, 199.854, 200.695, 201.719, 202.105, 202.958, 203.707,
697 204.306, 205.319, 205.977, 206.875, 207.687, 208.352, 209.04, 209.352, 210.313, 211.322,
698 212.02, 212.458, 213.246, 214.331, 214.923, 215.466, 216.536, 217.346, 217.867, 218.463,
699 219.201, 219.88, 220.829, 221.461, 222.399, 223.068, 223.712, 224.174, 224.837, 225.838,
700 227.019, 227.171, 227.797, 228.663, 229.429, 230.323, 230.845, 231.574, 232.417, 232.677 };
701 double wid2[300] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
702 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
703 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
704 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
705 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
706 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
707 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
708 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
709 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
710 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
711 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
712 1.87136e-06, 1.50063e-05, 5.10425e-05, 0.000122121, 0.000240853, 0.000420318, 0.000675161, 0.0010173, 0.00146434, 0.00203321,
713 0.00273489, 0.0035927, 0.00462579, 0.00584255, 0.00727372, 0.00895462, 0.0108831, 0.013085, 0.0156197, 0.0184865,
714 0.0217078, 0.0253423, 0.0294103, 0.0339191, 0.0389837, 0.0446351, 0.0508312, 0.0577268, 0.0653189, 0.0737049,
715 0.0829819, 0.0930611, 0.104328, 0.116663, 0.130105, 0.144922, 0.16122, 0.179091, 0.198759, 0.220133,
716 0.243916, 0.269803, 0.298861, 0.330061, 0.365741, 0.40437, 0.447191, 0.49501, 0.548576, 0.606445,
717 0.674414, 0.748353, 0.831686, 0.929938, 1.03771, 1.16187, 1.30387, 1.47341, 1.65629, 1.88318,
718 2.14353, 2.44169, 2.79831, 3.2009, 3.65522, 4.16317, 4.69597, 5.2585, 5.85965, 6.44984,
719 7.04202, 7.60113, 8.14571, 8.73195, 9.24537, 9.75717, 10.2093, 10.6731, 11.1487, 11.5819,
720 12.0158, 12.4253, 12.8113, 13.2073, 13.5995, 13.9317, 14.312, 14.6595, 14.9511, 15.2668,
721 15.6092, 15.9349, 16.1873, 16.5049, 16.819, 17.0743, 17.3621, 17.6094, 17.8418, 18.0681,
722 18.3141, 18.5914, 18.8187, 19.0562, 19.2282, 19.4918, 19.7326, 19.9112, 20.134, 20.3386,
723 20.511, 20.6865, 20.8958, 21.0518, 21.2967, 21.44, 21.6361, 21.8012, 21.9523, 22.1736,
724 22.2615, 22.4207, 22.6056, 22.7198, 22.9299, 23.0605, 23.2959, 23.3808, 23.4961, 23.6793,
725 23.7843, 23.9697, 24.0689, 24.1919, 24.405, 24.3898, 24.6018, 24.7294, 24.789, 24.9978,
726 25.0626, 25.1728, 25.2809, 25.3579, 25.5444, 25.5995, 25.7644, 25.8397, 25.9229, 26.095,
727 26.1495, 26.2899, 26.3871, 26.54, 26.6603, 26.7008, 26.7836, 26.907, 26.9653, 26.9969,
728 27.1226, 27.226, 27.3543, 27.4686, 27.4887, 27.6163, 27.6986, 27.7506, 27.7884, 27.8662,
729 27.9886, 28.0573, 28.1238, 28.2612, 28.3209, 28.3457, 28.4392, 28.5086, 28.6399, 28.7603,
730 28.788, 28.8502, 28.9038, 28.9667, 28.975, 29.0032, 29.2681, 29.2392, 29.2572, 29.3364 };
732 return wid1[i]*
g1+wid2[i]*g2;
735double D0To2pip2pim::anywid1260(
double sc,
double g1,
double g2){
737 double smin = (0.13957*3)*(0.13957*3);
739 int od = (sc - 0.18)/dh;
740 double sc_m = 0.18 + od*dh;
742 if(sc>=0.18 && sc<=3.17){
743 widuse = ((sc-sc_m)/dh)*(widT1260(od+1,
g1,g2)-widT1260(od,
g1,g2))+widT1260(od,
g1,g2);
744 }
else if(sc<0.18 && sc>smin){
745 widuse = ((sc - smin)/(0.18-smin))*widT1260(0,
g1,g2);
747 widuse = widT1260(299,
g1,g2);
755complex<double> D0To2pip2pim::RBWa1260(
double mx2,
double mr,
double g1,
double g2){
757 double mx = sqrt(mx2);
759 double wid0 = anywid1260(mx2,
g1,g2);
761 double denom_real = mr2-mx2;
762 double denom_imag = mr*wid0;
764 double denom = denom_real*denom_real+denom_imag*denom_imag;
765 double output_x = denom_real/denom;
766 double output_y = denom_imag/denom;
774double D0To2pip2pim::widT1300(
int i){
776 double wid1[300] = { 0.0702928, 0.399073, 0.991742, 1.82025, 2.85953, 4.08606, 5.48082, 7.02683, 8.70496, 10.5007,
777 12.4053, 14.4026, 16.4831, 18.6423, 20.8642, 23.1544, 25.4896, 27.8703, 30.3015, 32.7861,
778 35.2622, 37.8173, 40.3819, 42.974, 45.5732, 48.2303, 50.8659, 53.5741, 56.28, 59.0242,
779 61.738, 64.5642, 67.377, 70.1605, 73.0155, 75.8849, 78.7611, 81.7366, 84.7156, 87.7527,
780 90.7217, 93.8402, 96.8516, 100.036, 103.168, 106.483, 109.772, 113.098, 116.491, 120.013,
781 123.618, 127.069, 130.983, 134.868, 138.605, 142.625, 147.007, 151.154, 155.625, 160.1,
782 164.776, 169.651, 174.646, 179.669, 185.084, 190.409, 196.147, 201.788, 207.901, 214.041,
783 220.327, 226.505, 233.334, 239.816, 246.878, 253.563, 260.393, 267.453, 274.5, 282.15,
784 289.014, 296.45, 303.808, 311.427, 318.649, 326.965, 334.298, 341.576, 349.715, 356.89,
785 365.029, 372.677, 379.882, 387.677, 395.178, 402.445, 410.353, 418.649, 424.994, 432.156,
786 440.002, 448.394, 454.382, 460.97, 468.446, 475.847, 481.956, 489.729, 496.094, 501.22,
787 509.278, 514.618, 521.06, 528.247, 534.246, 540.312, 547.316, 552.549, 559.193, 566.059,
788 572.882, 578.147, 585.118, 589.989, 596.717, 601.222, 607.749, 613.96, 621.107, 625.218,
789 630.396, 635.57, 641.175, 646.024, 651.984, 657.156, 661.385, 666.804, 672.088, 675.939,
790 681.207, 685.072, 690.63, 694.767, 699.469, 704.1, 709.445, 713.704, 716.909, 720.681,
791 726.12, 730.403, 733.553, 739.123, 742.156, 746.6, 750.027, 753.462, 757.426, 761.595,
792 764.336, 768.251, 772.371, 775.963, 778.886, 781.905, 784.798, 788.825, 792.372, 796.27,
793 800.361, 803.544, 806.544, 808.819, 812.146, 814.989, 819.234, 820.073, 824.067, 828.047,
794 830.277, 833.013, 835.374, 838.463, 840.82, 844.655, 846.391, 849.408, 851.659, 853.977,
795 856.409, 860.029, 862.128, 866.104, 866.864, 869.24, 872.133, 872.591, 876.528, 879.029,
796 880.786, 883.8, 886.065, 887.511, 890.301, 892.086, 894.429, 895.666, 897.961, 900.712,
797 901.559, 904.787, 906.882, 908.034, 911.366, 911.249, 914.274, 916.238, 918.105, 920.585,
798 920.473, 924.468, 923.888, 926.046, 928.648, 930.3, 931.861, 934.253, 934.081, 936.95,
799 938.319, 940.464, 940.539, 943.393, 944.729, 946.944, 947.712, 948.948, 951.026, 952.121,
800 954.114, 955.146, 956.206, 959.056, 960.316, 962.919, 961.946, 964.324, 966.134, 967.689,
801 968.612, 970.357, 972.302, 973.514, 976.512, 975.815, 979.043, 979.486, 981.285, 983.173,
802 983.96, 985.947, 987.447, 988.455, 991.739, 992.1, 993.045, 995.918, 997.377, 999.136,
803 1001.51, 1001.12, 1002.46, 1004.57, 1005.76, 1007.12, 1009.23, 1011.7, 1012.48, 1014.84,
804 1014.21, 1017.28, 1017.22, 1018.95, 1021.8, 1021.94, 1023.22, 1025.13, 1026.01, 1027.8,
805 1030.04, 1030.12, 1031.54, 1033.2, 1034.62, 1035.83, 1037.33, 1037.92, 1038.9, 1041.69 };
809double D0To2pip2pim::anywid1300(
double sc){
811 double smin = (0.13957*3)*(0.13957*3);
813 int od = (sc - 0.18)/dh;
814 double sc_m = 0.18 + od*dh;
816 if(sc>=0.18 && sc<=3.17){
817 widuse = ((sc-sc_m)/dh)*(widT1300(od+1)-widT1300(od))+widT1300(od);
818 }
else if(sc<0.18 && sc>smin){
819 widuse = ((sc - smin)/(0.18-smin))*widT1300(0);
821 widuse = widT1300(299);
828complex<double> D0To2pip2pim::RBWpi1300(
double mx2,
double mr,
double wr){
830 double mx = sqrt(mx2);
832 double g1 = wr/anywid1300(mr2);
833 double wid0 = anywid1300(mx2)*
g1;
835 double denom_real = mr2-mx2;
836 double denom_imag = mr*wid0;
838 double denom = denom_real*denom_real+denom_imag*denom_imag;
839 double output_x = denom_real/denom;
840 double output_y = denom_imag/denom;
848double D0To2pip2pim::widT1640(
int i){
849 double wid1[300] = { 1.38316e-05, 0.000403892, 0.00181814, 0.0048161, 0.00982907, 0.0172548, 0.0273979, 0.040567, 0.0569061, 0.0768551,
850 0.100513, 0.128031, 0.159729, 0.195626, 0.236099, 0.280881, 0.330745, 0.386095, 0.446448, 0.511879,
851 0.583827, 0.66167, 0.745453, 0.835386, 0.934317, 1.0386, 1.1513, 1.26975, 1.39901, 1.53362,
852 1.68291, 1.84163, 2.0066, 2.18366, 2.37394, 2.57742, 2.7905, 3.02463, 3.27434, 3.53467,
853 3.80737, 4.10838, 4.41975, 4.76341, 5.12572, 5.51301, 5.91839, 6.36597, 6.8457, 7.33806,
854 7.87328, 8.45901, 9.08869, 9.74744, 10.464, 11.2096, 12.0103, 12.8556, 13.7563, 14.7352,
855 15.7336, 16.7432, 17.8117, 18.9327, 20.0186, 21.1632, 22.3549, 23.5172, 24.6518, 25.7808,
856 26.9103, 28.016, 29.1542, 30.0458, 31.0808, 32.1018, 33.0395, 33.9151, 34.8873, 35.7289,
857 36.5603, 37.2489, 38.023, 38.7983, 39.55, 40.2977, 40.8819, 41.4564, 42.1864, 42.7368,
858 43.3923, 43.8651, 44.4667, 44.8108, 45.3935, 45.9551, 46.2652, 46.8683, 47.1943, 47.6864,
859 48.1666, 48.5599, 48.8894, 49.1867, 49.6234, 49.9326, 50.4594, 50.6707, 51.005, 51.2612,
860 51.7638, 51.8946, 52.3176, 52.5107, 52.7378, 52.9418, 53.4019, 53.3571, 53.7937, 54.137,
861 54.2265, 54.3471, 54.6637, 54.897, 55.2174, 55.1577, 55.7098, 55.8616, 55.8862, 56.2106,
862 56.3357, 56.5165, 56.6819, 56.7906, 56.9814, 57.0507, 57.3059, 57.4898, 57.5848, 57.5792,
863 57.7696, 58.0302, 58.1915, 58.3319, 58.3892, 58.4671, 58.6736, 58.7872, 58.7949, 58.8366,
864 59.0247, 59.0881, 59.2675, 59.479, 59.6261, 59.6111, 59.6055, 59.7286, 59.8806, 60.0424,
865 60.1126, 60.0742, 60.2066, 60.2253, 60.565, 60.6557, 60.7359, 60.6405, 60.6429, 60.8521,
866 60.8098, 61.0699, 61.1678, 61.0329, 61.0522, 61.1792, 61.3671, 61.4394, 61.5152, 61.6122,
867 61.584, 61.711, 61.707, 61.7254, 61.816, 61.9248, 61.9748, 61.9498, 62.0014, 62.0634,
868 62.2929, 62.2349, 62.2101, 62.4434, 62.4281, 62.4166, 62.4905, 62.6055, 62.5097, 62.5994,
869 62.6637, 62.6794, 62.7068, 62.7908, 62.8135, 63.0085, 62.8848, 62.8159, 63.047, 62.8632,
870 63.1119, 63.0864, 63.1423, 63.2334, 63.0695, 63.2902, 63.3719, 63.1882, 63.2649, 63.3338,
871 63.4709, 63.4662, 63.3746, 63.623, 63.6402, 63.5632, 63.6611, 63.6012, 63.5904, 63.7467,
872 63.5535, 63.7792, 63.5213, 63.829, 63.8696, 63.8047, 63.9557, 63.9433, 63.9363, 63.9436,
873 63.9804, 64.0707, 64.0105, 63.96, 64.0437, 64.0235, 64.1795, 64.1377, 64.073, 64.2282,
874 64.2933, 64.4369, 64.3887, 64.2474, 64.2373, 64.3553, 64.425, 64.4401, 64.3197, 64.4212,
875 64.5787, 64.4919, 64.6878, 64.4998, 64.5788, 64.6628, 64.6658, 64.5072, 64.7227, 64.7327,
876 64.4472, 64.6792, 64.7801, 64.5715, 64.7263, 64.8505, 64.7488, 64.6448, 64.8962, 64.8815,
877 64.821, 64.902, 64.8944, 64.8959, 64.8957, 64.7882, 65.0725, 64.8787, 64.797, 65.1112,
878 65.1212, 65.157, 64.9412, 65.2601, 65.0662, 65.0093, 65.0899, 65.1035, 65.0865, 65.3276 };
882double D0To2pip2pim::anywid1640(
double sc){
884 double smin = (0.13957*3)*(0.13957*3);
886 int od = (sc - 0.18)/dh;
887 double sc_m = 0.18 + od*dh;
889 if(sc>=0.18 && sc<=3.17){
890 widuse = ((sc-sc_m)/dh)*(widT1640(od+1)-widT1640(od))+widT1640(od);
891 }
else if(sc<0.18 && sc>smin){
892 widuse = ((sc - smin)/(0.18-smin))*widT1640(0);
894 widuse = widT1640(299);
901complex<double> D0To2pip2pim::RBWa1640(
double mx2,
double mr,
double wr){
903 double mx = sqrt(mx2);
905 double g1 = wr/anywid1640(mr2);
906 double wid0 = anywid1640(mx2)*
g1;
908 double denom_real = mr2-mx2;
909 double denom_imag = mr*wid0;
911 double denom = denom_real*denom_real+denom_imag*denom_imag;
912 double output_x = denom_real/denom;
913 double output_y = denom_imag/denom;
921double D0To2pip2pim::rho22(
double sc){
922 double rho[689] = { 3.70024e-18, 8.52763e-15, 1.87159e-13, 1.3311e-12, 5.61842e-12, 1.75224e-11, 4.48597e-11, 9.99162e-11, 2.00641e-10, 3.71995e-10,
923 6.47093e-10, 1.06886e-09, 1.69124e-09, 2.58031e-09, 3.8168e-09, 5.49601e-09, 7.72996e-09, 1.06509e-08, 1.44078e-08, 1.91741e-08,
924 2.51445e-08, 3.25345e-08, 4.15946e-08, 5.25949e-08, 6.58316e-08, 8.16443e-08, 1.00389e-07, 1.22455e-07, 1.48291e-07, 1.78348e-07,
925 2.1313e-07, 2.53192e-07, 2.99086e-07, 3.51462e-07, 4.10993e-07, 4.78349e-07, 5.54327e-07, 6.3972e-07, 7.35316e-07, 8.42099e-07,
926 9.61004e-07, 1.09295e-06, 1.2391e-06, 1.40051e-06, 1.57824e-06, 1.77367e-06, 1.98805e-06, 2.22257e-06, 2.47877e-06, 2.7581e-06,
927 3.06186e-06, 3.39182e-06, 3.74971e-06, 4.137e-06, 4.5555e-06, 5.00725e-06, 5.4939e-06, 6.01725e-06, 6.57992e-06, 7.18371e-06,
928 7.83044e-06, 8.52301e-06, 9.26342e-06, 1.00535e-05, 1.08967e-05, 1.17953e-05, 1.27514e-05, 1.37679e-05, 1.48482e-05, 1.59943e-05,
929 1.72088e-05, 1.84961e-05, 1.98586e-05, 2.12987e-05, 2.28207e-05, 2.44279e-05, 2.61228e-05, 2.79084e-05, 2.97906e-05, 3.17718e-05,
930 3.38544e-05, 3.60443e-05, 3.8345e-05, 4.07591e-05, 4.32903e-05, 4.59459e-05, 4.87285e-05, 5.16403e-05, 5.46887e-05, 5.7878e-05,
931 6.12111e-05, 6.46908e-05, 6.83274e-05, 7.21231e-05, 7.60817e-05, 8.0208e-05, 8.45102e-05, 8.89919e-05, 9.36544e-05, 9.85082e-05,
932 0.000103559, 0.000108812, 0.000114267, 0.000119938, 0.000125827, 0.00013194, 0.000138278, 0.000144857, 0.000151681, 0.000158752,
933 0.000166074, 0.000173663, 0.000181521, 0.000189652, 0.000198059, 0.000206761, 0.000215761, 0.000225063, 0.00023467, 0.000244599,
934 0.000254855, 0.00026544, 0.000276357, 0.000287629, 0.00029926, 0.000311253, 0.000323609, 0.000336351, 0.000349483, 0.000363009,
935 0.000376926, 0.000391264, 0.000406029, 0.000421225, 0.000436848, 0.000452921, 0.000469458, 0.000486461, 0.00050393, 0.00052187,
936 0.000540322, 0.000559278, 0.000578746, 0.00059872, 0.000619236, 0.0006403, 0.000661911, 0.000684074, 0.000706799, 0.000730127,
937 0.00075405, 0.000778569, 0.000803686, 0.000829443, 0.000855839, 0.000882879, 0.000910561, 0.000938898, 0.000967939, 0.000997674,
938 0.00102811, 0.00105923, 0.0010911, 0.0011237, 0.00115706, 0.00119117, 0.00122601, 0.00126168, 0.00129815, 0.00133543,
939 0.00137351, 0.00141242, 0.00145219, 0.00149283, 0.00153434, 0.0015767, 0.00161995, 0.00166415, 0.00170928, 0.00175534,
940 0.00180232, 0.00185028, 0.00189924, 0.00194919, 0.00200014, 0.00205207, 0.00210503, 0.0021591, 0.00221421, 0.0022704,
941 0.00232766, 0.00238602, 0.00244554, 0.00250619, 0.00256799, 0.0026309, 0.002695, 0.00276033, 0.00282689, 0.00289467,
942 0.00296367, 0.00303389, 0.00310543, 0.0031783, 0.00325244, 0.0033279, 0.0034046, 0.00348275, 0.00356229, 0.00364322,
943 0.00372555, 0.00380924, 0.00389438, 0.00398104, 0.00406914, 0.00415877, 0.00424985, 0.00434235, 0.00443651, 0.00453224,
944 0.00462954, 0.00472848, 0.00482894, 0.00493102, 0.00503483, 0.00514029, 0.00524749, 0.0053563, 0.00546675, 0.00557905,
945 0.0056931, 0.00580901, 0.0059267, 0.00604613, 0.00616735, 0.00629049, 0.00641557, 0.00654254, 0.00667142, 0.00680216,
946 0.00693472, 0.00706946, 0.00720621, 0.00734497, 0.0074858, 0.00762855, 0.00777338, 0.00792036, 0.00806957, 0.00822087,
947 0.00837426, 0.00852982, 0.0086875, 0.00884756, 0.00900991, 0.00917447, 0.00934137, 0.00951052, 0.00968194, 0.0098558,
948 0.010032, 0.0102108, 0.0103919, 0.0105754, 0.0107612, 0.0109496, 0.0111406, 0.0113343, 0.0115305, 0.0117293,
949 0.0119303, 0.0121343, 0.0123409, 0.0125502, 0.0127623, 0.0129771, 0.0131944, 0.0134145, 0.0136376, 0.0138636,
950 0.0140924, 0.0143241, 0.0145587, 0.0147959, 0.0150363, 0.0152797, 0.0155262, 0.0157758, 0.0160283, 0.0162838,
951 0.0165421, 0.016804, 0.0170691, 0.0173374, 0.0176087, 0.0178835, 0.0181612, 0.0184423, 0.0187269, 0.0190149,
952 0.0193063, 0.0196009, 0.0198991, 0.0202003, 0.0205052, 0.0208137, 0.0211259, 0.0214418, 0.0217611, 0.0220841,
953 0.0224105, 0.0227406, 0.0230746, 0.0234125, 0.0237542, 0.0240996, 0.0244486, 0.0248012, 0.025158, 0.0255188,
954 0.0258837, 0.0262527, 0.0266256, 0.0270025, 0.0273833, 0.027768, 0.0281572, 0.0285505, 0.0289483, 0.0293503,
955 0.0297564, 0.0301665, 0.0305808, 0.0309997, 0.0314231, 0.0318511, 0.0322835, 0.0327205, 0.0331616, 0.0336073,
956 0.0340576, 0.0345128, 0.0349727, 0.0354373, 0.0359066, 0.0363807, 0.0368589, 0.0373419, 0.0378302, 0.0383234,
957 0.0388218, 0.0393252, 0.0398336, 0.040347, 0.0408652, 0.041388, 0.0419165, 0.0424502, 0.0429893, 0.0435338,
958 0.0440833, 0.044638, 0.0451976, 0.0457627, 0.0463338, 0.0469103, 0.047492, 0.0480797, 0.0486729, 0.0492716,
959 0.0498757, 0.0504852, 0.0511009, 0.0517229, 0.0523503, 0.0529838, 0.0536231, 0.0542678, 0.054918, 0.0555743,
960 0.0562372, 0.0569065, 0.0575818, 0.0582634, 0.0589511, 0.0596454, 0.0603451, 0.061051, 0.0617635, 0.0624826,
961 0.0632084, 0.0639409, 0.06468, 0.0654254, 0.0661772, 0.0669346, 0.0676994, 0.0684714, 0.0692503, 0.0700354,
962 0.0708285, 0.0716277, 0.0724347, 0.0732479, 0.0740671, 0.0748947, 0.0757299, 0.0765715, 0.0774207, 0.0782771,
963 0.0791407, 0.0800119, 0.0808897, 0.0817743, 0.0826672, 0.0835684, 0.0844769, 0.0853938, 0.0863179, 0.0872493,
964 0.0881882, 0.0891349, 0.090089, 0.0910523, 0.0920236, 0.093002, 0.0939894, 0.094985, 0.0959887, 0.0970003,
965 0.0980191, 0.0990454, 0.100081, 0.101126, 0.10218, 0.103242, 0.104312, 0.105392, 0.10648, 0.107576,
966 0.10868, 0.109793, 0.110916, 0.112048, 0.113188, 0.114339, 0.115498, 0.116666, 0.117843, 0.119028,
967 0.120223, 0.121427, 0.122641, 0.123865, 0.125098, 0.126342, 0.127595, 0.128857, 0.130128, 0.131409,
968 0.132701, 0.134002, 0.135314, 0.136635, 0.137966, 0.139308, 0.14066, 0.142022, 0.143394, 0.144774,
969 0.146166, 0.14757, 0.148985, 0.15041, 0.151845, 0.153291, 0.154749, 0.156215, 0.157694, 0.159182,
970 0.160682, 0.162194, 0.163718, 0.165251, 0.166797, 0.168354, 0.169921, 0.1715, 0.17309, 0.17469,
971 0.176304, 0.177929, 0.179566, 0.181216, 0.182878, 0.184553, 0.186238, 0.187934, 0.189642, 0.191362,
972 0.193096, 0.194842, 0.196602, 0.198374, 0.200158, 0.201954, 0.203764, 0.205586, 0.207421, 0.209266,
973 0.211124, 0.212997, 0.214882, 0.216783, 0.218697, 0.220624, 0.222565, 0.224518, 0.226486, 0.228466,
974 0.230458, 0.232463, 0.234484, 0.23652, 0.238569, 0.240633, 0.242711, 0.244803, 0.246909, 0.249031,
975 0.251165, 0.253313, 0.255475, 0.257649, 0.259841, 0.262051, 0.264274, 0.266514, 0.268768, 0.271036,
976 0.273319, 0.275618, 0.277932, 0.280259, 0.282602, 0.28496, 0.287338, 0.28973, 0.292138, 0.294563,
977 0.297003, 0.299458, 0.30193, 0.304417, 0.306919, 0.309437, 0.311972, 0.314526, 0.317095, 0.319684,
978 0.322289, 0.324911, 0.327551, 0.330205, 0.332876, 0.335567, 0.338271, 0.340993, 0.343736, 0.346496,
979 0.349272, 0.352065, 0.354878, 0.35771, 0.360561, 0.363426, 0.366311, 0.369212, 0.372128, 0.375067,
980 0.378027, 0.381006, 0.384001, 0.387014, 0.39005, 0.393106, 0.396181, 0.399271, 0.402384, 0.405513,
981 0.408661, 0.41183, 0.41502, 0.418233, 0.421462, 0.424709, 0.42798, 0.43127, 0.434583, 0.437914,
982 0.441267, 0.444637, 0.448022, 0.451434, 0.454868, 0.458328, 0.461805, 0.465302, 0.468821, 0.472364,
983 0.475928, 0.47951, 0.483119, 0.486748, 0.490397, 0.494066, 0.497758, 0.501477, 0.505217, 0.508977,
984 0.512762, 0.516567, 0.520394, 0.524247, 0.528125, 0.532027, 0.535947, 0.53989, 0.543852, 0.547844,
985 0.551863, 0.555904, 0.559966, 0.56406, 0.568177, 0.572312, 0.576471, 0.580662, 0.584875, 0.58911,
986 0.593373, 0.597653, 0.601965, 0.606301, 0.610663, 0.615051, 0.619465, 0.623907, 0.62837, 0.632863,
987 0.637383, 0.641924, 0.646494, 0.651091, 0.655708, 0.660356, 0.665027, 0.669732, 0.674464, 0.679227,
988 0.684016, 0.688827, 0.693664, 0.698532, 0.703428, 0.708353, 0.713307, 0.718283, 0.72329, 0.728322,
989 0.733387, 0.738479, 0.743605, 0.748763, 0.753949, 0.759163, 0.764407, 0.769674, 0.774973, 0.780311,
990 0.78567, 0.791057, 0.796476, 0.801922, 0.8074, 0.812919, 0.818466, 0.824044 };
992 double m2 = 0.13957*0.13957;
993 double smin = (0.13957*4)*(0.13957*4);
995 int od = (sc - 0.312)/dh;
996 double sc_m = 0.312 + od*dh;
998 if(sc>=0.312 && sc<1){
999 rhouse = ((sc-sc_m)/dh)*(rho[od+1]-rho[od])+rho[od];
1000 }
else if(sc<0.312 && sc>=smin){
1001 rhouse = ((sc - smin)/(0.312-smin))*rho[0];
1004 rhouse = sqrt(1-16*
m2/sc);
1015 double mpi = 0.13957;
1017 double m2 = 0.13957*0.13957;
1019 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1022 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1027 double m2 = 0.493677*0.493677;
1029 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1032 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1041 double m2 = 0.547862*0.547862;
1043 rhoijx = sqrt(1.0f - (4*
m2)/
s);
1046 rhoijy = sqrt((4*
m2)/
s - 1.0f);
1051 double m_1 = 0.547862;
1052 double m_2 = 0.95778;
1053 double mp2 = (m_1+m_2)*(m_1+m_2);
1054 double mm2 = (m_1-m_2)*(m_1-m_2);
1056 rhoijx = sqrt(1.0f - mp2/
s);
1059 rhoijy = sqrt(mp2/
s - 1.0f);
1077 double mpi = 0.13957;
1078 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
1080 double g1[5] = { 0.22889,-0.55377, 0.00000,-0.39899,-0.34639};
1081 double g2[5] = { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503};
1082 double g3[5] = { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681};
1083 double g4[5] = { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984};
1084 double g5[5] = { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358};
1086 double f1[5] = { 0.23399, 0.15044,-0.20545, 0.32825, 0.35412};
1090 double down[5] = { 0,0,0,0,0};
1091 double upreal[5] = { 0,0,0,0,0};
1092 double upimag[5] = { 0,0,0,0,0};
1094 for(
int k=0; k<5; k++){
1100 double dm2 = m[k]*m[k]-
s;
1101 if(fabs(dm2)<
eps && dm2<=0) dm2 = -
eps;
1102 if(fabs(dm2)<
eps && dm2>0) dm2 =
eps;
1103 upreal[k] = 1.0f/dm2;
1107 double tmp1x =
g1[i]*
g1[j]*upreal[0] + g2[i]*g2[j]*upreal[1] + g3[i]*g3[j]*upreal[2] + g4[i]*g4[j]*upreal[3] + g5[i]*g5[j]*upreal[4];
1108 double tmp1y =
g1[i]*
g1[j]*upimag[0] + g2[i]*g2[j]*upimag[1] + g3[i]*g3[j]*upimag[2] + g4[i]*g4[j]*upimag[3] + g5[i]*g5[j]*upimag[4];
1112 tmp2 =
f1[j]*(1+3.92637)/(
s+3.92637);
1115 tmp2 =
f1[i]*(1+3.92637)/(
s+3.92637);
1117 double tmp3 = (
s-0.5*
mpi*
mpi)*(1+0.15)/(
s+0.15);
1119 Kijx = (tmp1x+tmp2)*tmp3;
1120 Kijy = (tmp1y)*tmp3;
1143complex<double> D0To2pip2pim::FMTX(
double Kijx,
double Kijy,
double rhojjx,
double rhojjy,
int i,
int j){
1148 double tmpx = rhojjx*Kijx - rhojjy*Kijy;
1149 double tmpy = rhojjx*Kijy + rhojjy*Kijx;
1151 Fijx = IMTX(i,j).real() + tmpy;
1159double D0To2pip2pim::FINVMTX(
double s,
double *FINVx,
double *FINVy){
1161 int P[5] = { 0,1,2,3,4};
1176 for(
int k=0; k<5; k++){
1177 double rhokkx = rhoMTX(k,k,
s).real();
1178 double rhokky = rhoMTX(k,k,
s).imag();
1181 for(
int l=k; l<5; l++){
1182 double Kklx = KMTX(k,l,
s).real();
1183 double Kkly = KMTX(k,l,
s).imag();
1186 Lx[l][k] = Lx[k][l];
1187 Ly[l][k] = Ly[k][l];
1191 for(
int k=0; k<5; k++){
1192 for(
int l=0; l<5; l++){
1193 double Fklx = FMTX(Lx[k][l],Ly[k][l],Ux[l][l],Uy[l][l],k,l).real();
1194 double Fkly = FMTX(Lx[k][l],Ly[k][l],Ux[l][l],Uy[l][l],k,l).imag();
1200 for(
int k=0; k<5; k++){
1201 double tmprM = (Fx[k][k]*Fx[k][k]+Fy[k][k]*Fy[k][k]);
1203 for(
int l=k; l<5; l++){
1204 double tmprF = (Fx[l][k]*Fx[l][k]+Fy[l][k]*Fy[l][k]);
1215 for(
int l=0; l<5; l++){
1217 double tmpFx = Fx[k][l];
1218 double tmpFy = Fy[k][l];
1220 Fx[k][l] = Fx[tmpID][l];
1221 Fy[k][l] = Fy[tmpID][l];
1223 Fx[tmpID][l] = tmpFx;
1224 Fy[tmpID][l] = tmpFy;
1228 for(
int l=k+1; l<5; l++){
1229 double rFkk = Fx[k][k]*Fx[k][k] + Fy[k][k]*Fy[k][k];
1230 double Fxlk = Fx[l][k];
1231 double Fylk = Fy[l][k];
1232 double Fxkk = Fx[k][k];
1233 double Fykk = Fy[k][k];
1234 Fx[l][k] = (Fxlk*Fxkk + Fylk*Fykk)/rFkk;
1235 Fy[l][k] = (Fylk*Fxkk - Fxlk*Fykk)/rFkk;
1236 for(
int m=k+1; m<5; m++){
1237 Fx[l][m] = Fx[l][m] - (Fx[l][k]*Fx[k][m] - Fy[l][k]*Fy[k][m]);
1238 Fy[l][m] = Fy[l][m] - (Fx[l][k]*Fy[k][m] + Fy[l][k]*Fx[k][m]);
1243 for(
int k=0; k<5; k++){
1244 for(
int l=0; l<5 ;l++){
1248 Ux[k][k] = Fx[k][k];
1249 Uy[k][k] = Fy[k][k];
1252 Lx[k][l] = Fx[k][l];
1253 Ly[k][l] = Fy[k][l];
1258 Ux[k][l] = Fx[k][l];
1259 Uy[k][l] = Fy[k][l];
1267 for(
int k=0; k<5; k++){
1272 double rUkk = Ux[k][k]*Ux[k][k] + Uy[k][k]*Uy[k][k];
1273 UIx[k][k] = Ux[k][k]/rUkk;
1274 UIy[k][k] = -1.0f * Uy[k][k]/rUkk ;
1276 for(
int l=(k+1); l<5; l++){
1283 for(
int l=(k-1); l>=0; l--){
1288 for(
int m=l+1; m<=k; m++){
1290 double sx_tmp = sx + Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k];
1291 c_sx = (sx_tmp - sx) - (Ux[l][m]*UIx[m][k] - Uy[l][m]*UIy[m][k]);
1295 double sy_tmp = sy + Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k];
1296 c_sy = (sy_tmp - sy) - (Ux[l][m]*UIy[m][k] + Uy[l][m]*UIx[m][k]);
1299 UIx[l][k] = -1.0f * (UIx[l][l]*sx - UIy[l][l]*sy);
1300 UIy[l][k] = -1.0f * (UIy[l][l]*sx + UIx[l][l]*sy);
1303 for(
int l=k+1; l<5; l++){
1308 for(
int m=k; m<l; m++){
1310 double sx_tmp = sx + Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k];
1311 c_sx = (sx_tmp - sx) - (Lx[l][m]*LIx[m][k] - Ly[l][m]*LIy[m][k]);
1315 double sy_tmp = sy + Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k];
1316 c_sy = (sy_tmp - sy) - (Lx[l][m]*LIy[m][k] + Ly[l][m]*LIx[m][k]);
1319 LIx[l][k] = -1.0f * sx;
1320 LIy[l][k] = -1.0f * sy;
1324 for(
int m=0; m<5; m++){
1329 for(
int k=0; k<5; k++){
1330 for(
int l=0; l<5; l++){
1332 if(
P[l] == m) Plm = 1;
1334 resX = resX - c_resX;
1335 double resX_tmp = resX + (UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm;
1336 c_resX = (resX_tmp - resX) - ((UIx[0][k]*LIx[k][l] - UIy[0][k]*LIy[k][l])*Plm);
1339 resY = resY - c_resY;
1340 double resY_tmp = resY + (UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm;
1341 c_resY = (resY_tmp - resY) - ((UIx[0][k]*LIy[k][l] + UIy[0][k]*LIx[k][l])*Plm);
1356 double m[5] = { 0.65100, 1.20360, 1.55817, 1.21000, 1.82206};
1364 double dm2 = m[
ID]*m[
ID]-
s;
1366 if(fabs(dm2)<
eps && dm2<=0) dm2 = -
eps;
1367 if(fabs(dm2)<
eps && dm2>0) dm2 =
eps;
1381 double FINVx[5] = {0,0,0,0,0};
1382 double FINVy[5] = {0,0,0,0,0};
1384 double tmpFLAG = FINVMTX(sa,FINVx,FINVy);
1387 double g[5][5] = {{ 0.22889,-0.55377, 0.00000,-0.39899,-0.34639},
1388 { 0.94128, 0.55095, 0.00000, 0.39065, 0.31503},
1389 { 0.36856, 0.23888, 0.55639, 0.18340, 0.18681},
1390 { 0.33650, 0.40907, 0.85679, 0.19906,-0.00984},
1391 { 0.18171,-0.17558,-0.79658,-0.00355, 0.22358}};
1396 double Plx = PVTR(l,sa).real();
1397 double Ply = PVTR(l,sa).imag();
1398 for(
int j=0; j<5; j++){
1399 resx = resx - c_resx;
1400 double resx_tmp = resx + (FINVx[j]*g[l][j]*Plx - FINVy[j]*g[l][j]*Ply);
1401 c_resx = (resx_tmp - resx) - (FINVx[j]*g[l][j]*Plx - FINVy[j]*g[l][j]*Ply);
1404 resy = resy - c_resy;
1405 double resy_tmp = resy + (FINVx[j]*g[l][j]*Ply + FINVy[j]*g[l][j]*Plx);
1406 c_resy = (resy_tmp - resy) - (FINVx[j]*g[l][j]*Ply + FINVy[j]*g[l][j]*Plx);
1415 if(fabs(ds)<
eps && ds<=0) ds = -
eps;
1416 if(fabs(ds)<
eps && ds>0) ds =
eps;
1417 double tmp = (1-s0)/ds;
1418 outputx = FINVx[idx]*tmp;
1419 outputy = FINVy[idx]*tmp;
1429 vector<double> Pip1Pim1; Pip1Pim1.clear();
1430 vector<double> Pip1Pim2; Pip1Pim2.clear();
1431 vector<double> Pip2Pim1; Pip2Pim1.clear();
1432 vector<double> Pip2Pim2; Pip2Pim2.clear();
1434 Pip1Pim1 = sum_tensor(Pip1, Pim1);
1435 Pip1Pim2 = sum_tensor(Pip1, Pim2);
1436 Pip2Pim1 = sum_tensor(Pip2, Pim1);
1437 Pip2Pim2 = sum_tensor(Pip2, Pim2);
1439 vector<double> Pip1Pip2Pim1; Pip1Pip2Pim1.clear();
1440 vector<double> Pip1Pip2Pim2; Pip1Pip2Pim2.clear();
1441 vector<double> Pim1Pim2Pip1; Pim1Pim2Pip1.clear();
1442 vector<double> Pim1Pim2Pip2; Pim1Pim2Pip2.clear();
1444 Pip1Pip2Pim1 = sum_tensor(Pip1Pim1, Pip2);
1445 Pip1Pip2Pim2 = sum_tensor(Pip1Pim2, Pip2);
1446 Pim1Pim2Pip1 = sum_tensor(Pip1Pim1, Pim2);
1447 Pim1Pim2Pip2 = sum_tensor(Pip2Pim1, Pim2);
1449 vector<double> D0; D0.clear();
1450 D0 = sum_tensor(Pip1Pip2Pim1, Pim2);
1452 double M2_Pip1Pim1 = contract_11_0(Pip1Pim1, Pip1Pim1);
1453 double M2_Pip1Pim2 = contract_11_0(Pip1Pim2, Pip1Pim2);
1454 double M2_Pip2Pim1 = contract_11_0(Pip2Pim1, Pip2Pim1);
1455 double M2_Pip2Pim2 = contract_11_0(Pip2Pim2, Pip2Pim2);
1457 double M2_Pip1Pip2Pim1 = contract_11_0(Pip1Pip2Pim1, Pip1Pip2Pim1);
1458 double M2_Pip1Pip2Pim2 = contract_11_0(Pip1Pip2Pim2, Pip1Pip2Pim2);
1459 double M2_Pim1Pim2Pip1 = contract_11_0(Pim1Pim2Pip1, Pim1Pim2Pip1);
1460 double M2_Pim1Pim2Pip2 = contract_11_0(Pim1Pim2Pip2, Pim1Pim2Pip2);
1461 double M2_D0 = contract_11_0(D0, D0);
1463 complex<double> GS_rho770_11 = GS(M2_Pip1Pim1, m0_rho770, w0_rho770, m2_Pi, m2_Pi, rRes, 1);
1464 complex<double> GS_rho770_12 = GS(M2_Pip1Pim2, m0_rho770, w0_rho770, m2_Pi, m2_Pi, rRes, 1);
1465 complex<double> GS_rho770_21 = GS(M2_Pip2Pim1, m0_rho770, w0_rho770, m2_Pi, m2_Pi, rRes, 1);
1466 complex<double> GS_rho770_22 = GS(M2_Pip2Pim2, m0_rho770, w0_rho770, m2_Pi, m2_Pi, rRes, 1);
1468 complex<double> GS_rho1450_11 = GS(M2_Pip1Pim1, m0_rho1450, w0_rho1450, m2_Pi, m2_Pi, rRes, 1);
1469 complex<double> GS_rho1450_12 = GS(M2_Pip1Pim2, m0_rho1450, w0_rho1450, m2_Pi, m2_Pi, rRes, 1);
1470 complex<double> GS_rho1450_21 = GS(M2_Pip2Pim1, m0_rho1450, w0_rho1450, m2_Pi, m2_Pi, rRes, 1);
1471 complex<double> GS_rho1450_22 = GS(M2_Pip2Pim2, m0_rho1450, w0_rho1450, m2_Pi, m2_Pi, rRes, 1);
1473 complex<double> RBW_f21270_11 = RBW(M2_Pip1Pim1, m0_f21270, w0_f21270, m2_Pi, m2_Pi, rRes, 2);
1474 complex<double> RBW_f21270_12 = RBW(M2_Pip1Pim2, m0_f21270, w0_f21270, m2_Pi, m2_Pi, rRes, 2);
1475 complex<double> RBW_f21270_21 = RBW(M2_Pip2Pim1, m0_f21270, w0_f21270, m2_Pi, m2_Pi, rRes, 2);
1476 complex<double> RBW_f21270_22 = RBW(M2_Pip2Pim2, m0_f21270, w0_f21270, m2_Pi, m2_Pi, rRes, 2);
1498 complex<double> RBW_a11260p_1 = RBWa1260(M2_Pip1Pip2Pim1, m0_a11260, g1_a11260, g2_a11260);
1499 complex<double> RBW_a11260p_2 = RBWa1260(M2_Pip1Pip2Pim2, m0_a11260, g1_a11260, g2_a11260);
1500 complex<double> RBW_a11260m_1 = RBWa1260(M2_Pim1Pim2Pip1, m0_a11260, g1_a11260, g2_a11260);
1501 complex<double> RBW_a11260m_2 = RBWa1260(M2_Pim1Pim2Pip2, m0_a11260, g1_a11260, g2_a11260);
1503 complex<double> RBW_a21320p_1 = RBW(M2_Pip1Pip2Pim1, m0_a21320, w0_a21320, -1.0, -1.0, -1, -1);
1504 complex<double> RBW_a21320p_2 = RBW(M2_Pip1Pip2Pim2, m0_a21320, w0_a21320, -1.0, -1.0, -1, -1);
1505 complex<double> RBW_a21320m_1 = RBW(M2_Pim1Pim2Pip1, m0_a21320, w0_a21320, -1.0, -1.0, -1, -1);
1506 complex<double> RBW_a21320m_2 = RBW(M2_Pim1Pim2Pip2, m0_a21320, w0_a21320, -1.0, -1.0, -1, -1);
1508 complex<double> RBW_pi1300p_1 = RBWpi1300(M2_Pip1Pip2Pim1, m0_pi1300, w0_pi1300);
1509 complex<double> RBW_pi1300p_2 = RBWpi1300(M2_Pip1Pip2Pim2, m0_pi1300, w0_pi1300);
1510 complex<double> RBW_pi1300m_1 = RBWpi1300(M2_Pim1Pim2Pip1, m0_pi1300, w0_pi1300);
1511 complex<double> RBW_pi1300m_2 = RBWpi1300(M2_Pim1Pim2Pip2, m0_pi1300, w0_pi1300);
1513 complex<double> RBW_a11420p_1 = RBW(M2_Pip1Pip2Pim1, m0_a11420, w0_a11420, -1.0, -1.0, -1, -1);
1514 complex<double> RBW_a11420p_2 = RBW(M2_Pip1Pip2Pim2, m0_a11420, w0_a11420, -1.0, -1.0, -1, -1);
1515 complex<double> RBW_a11420m_1 = RBW(M2_Pim1Pim2Pip1, m0_a11420, w0_a11420, -1.0, -1.0, -1, -1);
1516 complex<double> RBW_a11420m_2 = RBW(M2_Pim1Pim2Pip2, m0_a11420, w0_a11420, -1.0, -1.0, -1, -1);
1519 vector<double> Proj1_3p1; Proj1_3p1.clear();
1520 vector<double> Proj1_3p2; Proj1_3p2.clear();
1521 vector<double> Proj1_3m1; Proj1_3m1.clear();
1522 vector<double> Proj1_3m2; Proj1_3m2.clear();
1524 Proj1_3p1 = ProjectionTensors(Pip1Pip2Pim1,1);
1525 Proj1_3p2 = ProjectionTensors(Pip1Pip2Pim2,1);
1526 Proj1_3m1 = ProjectionTensors(Pim1Pim2Pip1,1);
1527 Proj1_3m2 = ProjectionTensors(Pim1Pim2Pip2,1);
1530 vector<double> Proj2_3p1; Proj2_3p1.clear();
1531 vector<double> Proj2_3p2; Proj2_3p2.clear();
1532 vector<double> Proj2_3m1; Proj2_3m1.clear();
1533 vector<double> Proj2_3m2; Proj2_3m2.clear();
1535 Proj2_3p1 = ProjectionTensors(Pip1Pip2Pim1,2);
1536 Proj2_3p2 = ProjectionTensors(Pip1Pip2Pim2,2);
1537 Proj2_3m1 = ProjectionTensors(Pim1Pim2Pip1,2);
1538 Proj2_3m2 = ProjectionTensors(Pim1Pim2Pip2,2);
1541 vector<double> T1_Pip1Pim1; T1_Pip1Pim1.clear();
1542 vector<double> T1_Pip1Pim2; T1_Pip1Pim2.clear();
1543 vector<double> T1_Pip2Pim1; T1_Pip2Pim1.clear();
1544 vector<double> T1_Pip2Pim2; T1_Pip2Pim2.clear();
1546 T1_Pip1Pim1 = OrbitalTensors(Pip1Pim1, Pip1, Pim1, rRes, 1);
1547 T1_Pip1Pim2 = OrbitalTensors(Pip1Pim2, Pip1, Pim2, rRes, 1);
1548 T1_Pip2Pim1 = OrbitalTensors(Pip2Pim1, Pip2, Pim1, rRes, 1);
1549 T1_Pip2Pim2 = OrbitalTensors(Pip2Pim2, Pip2, Pim2, rRes, 1);
1551 vector<double> T1_Pim1Pip1; T1_Pim1Pip1.clear();
1552 vector<double> T1_Pim1Pip2; T1_Pim1Pip2.clear();
1553 vector<double> T1_Pim2Pip1; T1_Pim2Pip1.clear();
1554 vector<double> T1_Pim2Pip2; T1_Pim2Pip2.clear();
1556 T1_Pim1Pip1 = OrbitalTensors(Pip1Pim1, Pim1, Pip1, rRes, 1);
1557 T1_Pim1Pip2 = OrbitalTensors(Pip2Pim1, Pim1, Pip2, rRes, 1);
1558 T1_Pim2Pip1 = OrbitalTensors(Pip1Pim2, Pim2, Pip1, rRes, 1);
1559 T1_Pim2Pip2 = OrbitalTensors(Pip2Pim2, Pim2, Pip2, rRes, 1);
1561 vector<double> T2_Pip1Pim1; T2_Pip1Pim1.clear();
1562 vector<double> T2_Pip1Pim2; T2_Pip1Pim2.clear();
1563 vector<double> T2_Pip2Pim1; T2_Pip2Pim1.clear();
1564 vector<double> T2_Pip2Pim2; T2_Pip2Pim1.clear();
1566 T2_Pip1Pim1 = OrbitalTensors(Pip1Pim1, Pip1, Pim1, rRes, 2);
1567 T2_Pip1Pim2 = OrbitalTensors(Pip1Pim2, Pip1, Pim2, rRes, 2);
1568 T2_Pip2Pim1 = OrbitalTensors(Pip2Pim1, Pip2, Pim1, rRes, 2);
1569 T2_Pip2Pim2 = OrbitalTensors(Pip2Pim2, Pip2, Pim2, rRes, 2);
1572 vector<double> T1_Pip1Pim1Pip2; T1_Pip1Pim1Pip2.clear();
1573 vector<double> T1_Pip2Pim1Pip1; T1_Pip2Pim1Pip1.clear();
1574 vector<double> T1_Pip1Pim2Pip2; T1_Pip1Pim2Pip2.clear();
1575 vector<double> T1_Pip2Pim2Pip1; T1_Pip2Pim2Pip1.clear();
1576 vector<double> T1_Pip1Pim1Pim2; T1_Pip1Pim1Pim2.clear();
1577 vector<double> T1_Pip1Pim2Pim1; T1_Pip1Pim2Pim1.clear();
1578 vector<double> T1_Pip2Pim1Pim2; T1_Pip2Pim1Pim2.clear();
1579 vector<double> T1_Pip2Pim2Pim1; T1_Pip2Pim2Pim1.clear();
1581 T1_Pip1Pim1Pip2 = OrbitalTensors(Pip1Pip2Pim1, Pip1Pim1, Pip2, rRes, 1);
1582 T1_Pip2Pim1Pip1 = OrbitalTensors(Pip1Pip2Pim1, Pip2Pim1, Pip1, rRes, 1);
1583 T1_Pip1Pim2Pip2 = OrbitalTensors(Pip1Pip2Pim2, Pip1Pim2, Pip2, rRes, 1);
1584 T1_Pip2Pim2Pip1 = OrbitalTensors(Pip1Pip2Pim2, Pip2Pim2, Pip1, rRes, 1);
1585 T1_Pip1Pim1Pim2 = OrbitalTensors(Pim1Pim2Pip1, Pip1Pim1, Pim2, rRes, 1);
1586 T1_Pip2Pim1Pim2 = OrbitalTensors(Pim1Pim2Pip2, Pip2Pim1, Pim2, rRes, 1);
1587 T1_Pip1Pim2Pim1 = OrbitalTensors(Pim1Pim2Pip1, Pip1Pim2, Pim1, rRes, 1);
1588 T1_Pip2Pim2Pim1 = OrbitalTensors(Pim1Pim2Pip2, Pip2Pim2, Pim1, rRes, 1);
1590 vector<double> T2_Pip1Pim1Pip2; T2_Pip1Pim1Pip2.clear();
1591 vector<double> T2_Pip2Pim1Pip1; T2_Pip2Pim1Pip1.clear();
1592 vector<double> T2_Pip1Pim2Pip2; T2_Pip1Pim2Pip2.clear();
1593 vector<double> T2_Pip2Pim2Pip1; T2_Pip2Pim2Pip1.clear();
1594 vector<double> T2_Pip1Pim1Pim2; T2_Pip1Pim1Pim2.clear();
1595 vector<double> T2_Pip2Pim1Pim2; T2_Pip2Pim1Pim2.clear();
1596 vector<double> T2_Pip1Pim2Pim1; T2_Pip1Pim2Pim1.clear();
1597 vector<double> T2_Pip2Pim2Pim1; T2_Pip2Pim2Pim1.clear();
1599 T2_Pip1Pim1Pip2 = OrbitalTensors(Pip1Pip2Pim1, Pip1Pim1, Pip2, rRes, 2);
1600 T2_Pip2Pim1Pip1 = OrbitalTensors(Pip1Pip2Pim1, Pip2Pim1, Pip1, rRes, 2);
1601 T2_Pip1Pim2Pip2 = OrbitalTensors(Pip1Pip2Pim2, Pip1Pim2, Pip2, rRes, 2);
1602 T2_Pip2Pim2Pip1 = OrbitalTensors(Pip1Pip2Pim2, Pip2Pim2, Pip1, rRes, 2);
1603 T2_Pip1Pim1Pim2 = OrbitalTensors(Pim1Pim2Pip1, Pip1Pim1, Pim2, rRes, 2);
1604 T2_Pip2Pim1Pim2 = OrbitalTensors(Pim1Pim2Pip2, Pip2Pim1, Pim2, rRes, 2);
1605 T2_Pip1Pim2Pim1 = OrbitalTensors(Pim1Pim2Pip1, Pip1Pim2, Pim1, rRes, 2);
1606 T2_Pip2Pim2Pim1 = OrbitalTensors(Pim1Pim2Pip2, Pip2Pim2, Pim1, rRes, 2);
1609 vector<double> T1_2z11; T1_2z11.clear();
1610 vector<double> T1_2z12; T1_2z12.clear();
1611 vector<double> T1_2z21; T1_2z21.clear();
1612 vector<double> T1_2z22; T1_2z22.clear();
1614 T1_2z11 = OrbitalTensors(D0, Pip1Pim1, Pip2Pim2, rD, 1);
1615 T1_2z12 = OrbitalTensors(D0, Pip2Pim2, Pip1Pim1, rD, 1);
1616 T1_2z21 = OrbitalTensors(D0, Pip1Pim2, Pip2Pim1, rD, 1);
1617 T1_2z22 = OrbitalTensors(D0, Pip2Pim1, Pip1Pim2, rD, 1);
1619 vector<double> T2_2z11; T2_2z11.clear();
1620 vector<double> T2_2z12; T2_2z12.clear();
1621 vector<double> T2_2z21; T2_2z21.clear();
1622 vector<double> T2_2z22; T2_2z22.clear();
1624 T2_2z11 = OrbitalTensors(D0, Pip1Pim1, Pip2Pim2, rD, 2);
1625 T2_2z12 = OrbitalTensors(D0, Pip2Pim2, Pip1Pim1, rD, 2);
1626 T2_2z21 = OrbitalTensors(D0, Pip1Pim2, Pip2Pim1, rD, 2);
1627 T2_2z22 = OrbitalTensors(D0, Pip2Pim1, Pip1Pim2, rD, 2);
1630 vector<double> T1_3p1; T1_3p1.clear();
1631 vector<double> T1_3p2; T1_3p2.clear();
1632 vector<double> T1_3m1; T1_3m1.clear();
1633 vector<double> T1_3m2; T1_3m2.clear();
1635 T1_3p1 = OrbitalTensors(D0, Pip1Pip2Pim1, Pim2, rD, 1);
1636 T1_3p2 = OrbitalTensors(D0, Pip1Pip2Pim2, Pim1, rD, 1);
1637 T1_3m1 = OrbitalTensors(D0, Pim1Pim2Pip1, Pip2, rD, 1);
1638 T1_3m2 = OrbitalTensors(D0, Pim1Pim2Pip2, Pip1, rD, 1);
1640 vector<double> T2_3p1; T2_3p1.clear();
1641 vector<double> T2_3p2; T2_3p2.clear();
1642 vector<double> T2_3m1; T2_3m1.clear();
1643 vector<double> T2_3m2; T2_3m2.clear();
1645 T2_3p1 = OrbitalTensors(D0, Pip1Pip2Pim1, Pim2, rD, 2);
1646 T2_3p2 = OrbitalTensors(D0, Pip1Pip2Pim2, Pim1, rD, 2);
1647 T2_3m1 = OrbitalTensors(D0, Pim1Pim2Pip1, Pip2, rD, 2);
1648 T2_3m2 = OrbitalTensors(D0, Pim1Pim2Pip2, Pip1, rD, 2);
1651 vector< complex<double> > g_fitpara;g_fitpara.clear();
1684 double SF_Ap_S_VP_1 = contract_11_0(contract_21_1(Proj1_3p1, T1_Pip2Pim1), T1_3p1);
1685 double SF_Ap_S_VP_2 = contract_11_0(contract_21_1(Proj1_3p1, T1_Pip1Pim1), T1_3p1);
1686 double SF_Ap_S_VP_3 = contract_11_0(contract_21_1(Proj1_3p2, T1_Pip2Pim2), T1_3p2);
1687 double SF_Ap_S_VP_4 = contract_11_0(contract_21_1(Proj1_3p2, T1_Pip1Pim2), T1_3p2);
1688 amplitude += g_fitpara[0]*(SF_Ap_S_VP_1*RBW_a11260p_1*GS_rho770_21 + SF_Ap_S_VP_2*RBW_a11260p_1*GS_rho770_11 + SF_Ap_S_VP_3*RBW_a11260p_2*GS_rho770_22 + SF_Ap_S_VP_4*RBW_a11260p_2*GS_rho770_12);
1691 double SF_Ap_D_VP_1 = contract_11_0(contract_21_1(T2_Pip2Pim1Pip1, T1_Pip2Pim1), T1_3p1);
1692 double SF_Ap_D_VP_2 = contract_11_0(contract_21_1(T2_Pip1Pim1Pip2, T1_Pip1Pim1), T1_3p1);
1693 double SF_Ap_D_VP_3 = contract_11_0(contract_21_1(T2_Pip2Pim2Pip1, T1_Pip2Pim2), T1_3p2);
1694 double SF_Ap_D_VP_4 = contract_11_0(contract_21_1(T2_Pip1Pim2Pip2, T1_Pip1Pim2), T1_3p2);
1696 amplitude += g_fitpara[1]*(SF_Ap_D_VP_1*RBW_a11260p_1*GS_rho770_21 + SF_Ap_D_VP_2*RBW_a11260p_1*GS_rho770_11 + SF_Ap_D_VP_3*RBW_a11260p_2*GS_rho770_22 + SF_Ap_D_VP_4*RBW_a11260p_2*GS_rho770_12);
1699 double SF_Ap_P_TP_1 = contract_11_0(contract_21_1(contract_42_2(Proj2_3p1, T2_Pip2Pim1), T1_Pip2Pim1Pip1), T1_3p1);
1700 double SF_Ap_P_TP_2 = contract_11_0(contract_21_1(contract_42_2(Proj2_3p1, T2_Pip1Pim1), T1_Pip1Pim1Pip2), T1_3p1);
1701 double SF_Ap_P_TP_3 = contract_11_0(contract_21_1(contract_42_2(Proj2_3p2, T2_Pip2Pim2), T1_Pip2Pim2Pip1), T1_3p2);
1702 double SF_Ap_P_TP_4 = contract_11_0(contract_21_1(contract_42_2(Proj2_3p2, T2_Pip1Pim2), T1_Pip1Pim2Pip2), T1_3p2);
1704 amplitude += g_fitpara[2]*(SF_Ap_P_TP_1*RBW_a11260p_1*RBW_f21270_21 + SF_Ap_P_TP_2*RBW_a11260p_1*RBW_f21270_11 + SF_Ap_P_TP_3*RBW_a11260p_2*RBW_f21270_22 + SF_Ap_P_TP_4*RBW_a11260p_2*RBW_f21270_12);
1707 double SF_Ap_P_SP_1 = contract_11_0(T1_3p1, T1_Pip2Pim1Pip1);
1708 double SF_Ap_P_SP_2 = contract_11_0(T1_3p1, T1_Pip1Pim1Pip2);
1709 double SF_Ap_P_SP_3 = contract_11_0(T1_3p2, T1_Pip2Pim2Pip1);
1710 double SF_Ap_P_SP_4 = contract_11_0(T1_3p2, T1_Pip1Pim2Pip2);
1712 amplitude += g_fitpara[3]*(SF_Ap_P_SP_1*RBW_a11260p_1*PiPiS_21_0 + SF_Ap_P_SP_2*RBW_a11260p_1*PiPiS_11_0 + SF_Ap_P_SP_3*RBW_a11260p_2*PiPiS_22_0 + SF_Ap_P_SP_4*RBW_a11260p_2*PiPiS_12_0);
1713 amplitude += g_fitpara[4]*(SF_Ap_P_SP_1*RBW_a11260p_1*PiPiS_21_1 + SF_Ap_P_SP_2*RBW_a11260p_1*PiPiS_11_1 + SF_Ap_P_SP_3*RBW_a11260p_2*PiPiS_22_1 + SF_Ap_P_SP_4*RBW_a11260p_2*PiPiS_12_1);
1714 amplitude += g_fitpara[5]*(SF_Ap_P_SP_1*RBW_a11260p_1*PiPiS_21_5 + SF_Ap_P_SP_2*RBW_a11260p_1*PiPiS_11_5 + SF_Ap_P_SP_3*RBW_a11260p_2*PiPiS_22_5 + SF_Ap_P_SP_4*RBW_a11260p_2*PiPiS_12_5);
1717 double SF_Am_S_VP_1 = contract_11_0(contract_21_1(Proj1_3m1, T1_Pim2Pip1), T1_3m1);
1718 double SF_Am_S_VP_2 = contract_11_0(contract_21_1(Proj1_3m1, T1_Pim1Pip1), T1_3m1);
1719 double SF_Am_S_VP_3 = contract_11_0(contract_21_1(Proj1_3m2, T1_Pim2Pip2), T1_3m2);
1720 double SF_Am_S_VP_4 = contract_11_0(contract_21_1(Proj1_3m2, T1_Pim1Pip2), T1_3m2);
1722 amplitude += g_fitpara[0]*g_fitpara[6]*(SF_Am_S_VP_1*RBW_a11260m_1*GS_rho770_12 + SF_Am_S_VP_2*RBW_a11260m_1*GS_rho770_11 + SF_Am_S_VP_3*RBW_a11260m_2*GS_rho770_22 + SF_Am_S_VP_4*RBW_a11260m_2*GS_rho770_21);
1725 double SF_Am_D_VP_1 = contract_11_0(contract_21_1(T2_Pip1Pim2Pim1, T1_Pim2Pip1), T1_3m1);
1726 double SF_Am_D_VP_2 = contract_11_0(contract_21_1(T2_Pip1Pim1Pim2, T1_Pim1Pip1), T1_3m1);
1727 double SF_Am_D_VP_3 = contract_11_0(contract_21_1(T2_Pip2Pim2Pim1, T1_Pim2Pip2), T1_3m2);
1728 double SF_Am_D_VP_4 = contract_11_0(contract_21_1(T2_Pip2Pim1Pim2, T1_Pim1Pip2), T1_3m2);
1730 amplitude += g_fitpara[1]*g_fitpara[6]*(SF_Am_D_VP_1*RBW_a11260m_1*GS_rho770_12 + SF_Am_D_VP_2*RBW_a11260m_1*GS_rho770_11 + SF_Am_D_VP_3*RBW_a11260m_2*GS_rho770_22 + SF_Am_D_VP_4*RBW_a11260m_2*GS_rho770_21);
1733 double SF_Am_P_TP_1 = contract_11_0(contract_21_1(contract_42_2(Proj2_3m1, T2_Pip1Pim2), T1_Pip1Pim2Pim1), T1_3m1);
1734 double SF_Am_P_TP_2 = contract_11_0(contract_21_1(contract_42_2(Proj2_3m1, T2_Pip1Pim1), T1_Pip1Pim1Pim2), T1_3m1);
1735 double SF_Am_P_TP_3 = contract_11_0(contract_21_1(contract_42_2(Proj2_3m2, T2_Pip2Pim2), T1_Pip2Pim2Pim1), T1_3m2);
1736 double SF_Am_P_TP_4 = contract_11_0(contract_21_1(contract_42_2(Proj2_3m2, T2_Pip2Pim1), T1_Pip2Pim1Pim2), T1_3m2);
1738 amplitude += g_fitpara[2]*g_fitpara[6]*(SF_Am_P_TP_1*RBW_a11260m_1*RBW_f21270_12 + SF_Am_P_TP_2*RBW_a11260m_1*RBW_f21270_11 + SF_Am_P_TP_3*RBW_a11260m_2*RBW_f21270_22 + SF_Am_P_TP_4*RBW_a11260m_2*RBW_f21270_21);
1741 double SF_Am_P_SP_1 = contract_11_0(T1_3m1, T1_Pip1Pim2Pim1);
1742 double SF_Am_P_SP_2 = contract_11_0(T1_3m1, T1_Pip1Pim1Pim2);
1743 double SF_Am_P_SP_3 = contract_11_0(T1_3m2, T1_Pip2Pim2Pim1);
1744 double SF_Am_P_SP_4 = contract_11_0(T1_3m2, T1_Pip2Pim1Pim2);
1746 amplitude += g_fitpara[3]*g_fitpara[6]*(SF_Am_P_SP_1*RBW_a11260m_1*PiPiS_12_0 + SF_Am_P_SP_2*RBW_a11260m_1*PiPiS_11_0 + SF_Am_P_SP_3*RBW_a11260m_2*PiPiS_22_0 + SF_Am_P_SP_4*RBW_a11260m_2*PiPiS_21_0);
1747 amplitude += g_fitpara[4]*g_fitpara[6]*(SF_Am_P_SP_1*RBW_a11260m_1*PiPiS_12_1 + SF_Am_P_SP_2*RBW_a11260m_1*PiPiS_11_1 + SF_Am_P_SP_3*RBW_a11260m_2*PiPiS_22_1 + SF_Am_P_SP_4*RBW_a11260m_2*PiPiS_21_1);
1748 amplitude += g_fitpara[5]*g_fitpara[6]*(SF_Am_P_SP_1*RBW_a11260m_1*PiPiS_12_5 + SF_Am_P_SP_2*RBW_a11260m_1*PiPiS_11_5 + SF_Am_P_SP_3*RBW_a11260m_2*PiPiS_22_5 + SF_Am_P_SP_4*RBW_a11260m_2*PiPiS_21_5);
1754 amplitude += g_fitpara[7]*(SF_Ap_P_SP_1*RBW_a11420p_1*PiPiS_21_5 + SF_Ap_P_SP_2*RBW_a11420p_1*PiPiS_11_5 + SF_Ap_P_SP_3*RBW_a11420p_2*PiPiS_22_5 + SF_Ap_P_SP_4*RBW_a11420p_2*PiPiS_12_5);
1755 amplitude += g_fitpara[8]*(SF_Ap_P_SP_1*RBW_a11420p_1*PiPiS_21_6 + SF_Ap_P_SP_2*RBW_a11420p_1*PiPiS_11_6 + SF_Ap_P_SP_3*RBW_a11420p_2*PiPiS_22_6 + SF_Ap_P_SP_4*RBW_a11420p_2*PiPiS_12_6);
1757 vector<double> m_epsilon_uvmn;
1758 m_epsilon_uvmn.clear();
1759 for(
int i=0; i<4; i++){
1760 for(
int j=0; j<4; j++){
1761 for(
int k=0; k<4; k++){
1762 for(
int l=0; l<4; l++){
1763 if(i==j || i==k || i==l || j==k || j==l || k==l){
1764 m_epsilon_uvmn.push_back(0.0);
1766 if(i==0 && j==1 && k==2 && l==3) m_epsilon_uvmn.push_back(1.0);
1767 if(i==0 && j==1 && k==3 && l==2) m_epsilon_uvmn.push_back(-1.0);
1768 if(i==0 && j==2 && k==1 && l==3) m_epsilon_uvmn.push_back(-1.0);
1769 if(i==0 && j==2 && k==3 && l==1) m_epsilon_uvmn.push_back(1.0);
1770 if(i==0 && j==3 && k==1 && l==2) m_epsilon_uvmn.push_back(1.0);
1771 if(i==0 && j==3 && k==2 && l==1) m_epsilon_uvmn.push_back(-1.0);
1773 if(i==1 && j==0 && k==2 && l==3) m_epsilon_uvmn.push_back(-1.0);
1774 if(i==1 && j==0 && k==3 && l==2) m_epsilon_uvmn.push_back(1.0);
1775 if(i==1 && j==2 && k==0 && l==3) m_epsilon_uvmn.push_back(1.0);
1776 if(i==1 && j==2 && k==3 && l==0) m_epsilon_uvmn.push_back(-1.0);
1777 if(i==1 && j==3 && k==0 && l==2) m_epsilon_uvmn.push_back(-1.0);
1778 if(i==1 && j==3 && k==2 && l==0) m_epsilon_uvmn.push_back(1.0);
1780 if(i==2 && j==0 && k==1 && l==3) m_epsilon_uvmn.push_back(1.0);
1781 if(i==2 && j==0 && k==3 && l==1) m_epsilon_uvmn.push_back(-1.0);
1782 if(i==2 && j==1 && k==0 && l==3) m_epsilon_uvmn.push_back(-1.0);
1783 if(i==2 && j==1 && k==3 && l==0) m_epsilon_uvmn.push_back(1.0);
1784 if(i==2 && j==3 && k==0 && l==1) m_epsilon_uvmn.push_back(1.0);
1785 if(i==2 && j==3 && k==1 && l==0) m_epsilon_uvmn.push_back(-1.0);
1787 if(i==3 && j==0 && k==1 && l==2) m_epsilon_uvmn.push_back(-1.0);
1788 if(i==3 && j==0 && k==2 && l==1) m_epsilon_uvmn.push_back(1.0);
1789 if(i==3 && j==1 && k==0 && l==2) m_epsilon_uvmn.push_back(1.0);
1790 if(i==3 && j==1 && k==2 && l==0) m_epsilon_uvmn.push_back(-1.0);
1791 if(i==3 && j==2 && k==0 && l==1) m_epsilon_uvmn.push_back(-1.0);
1792 if(i==3 && j==2 && k==1 && l==0) m_epsilon_uvmn.push_back(1.0);
1800 double SF_Tp_D_VP_1 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3p1, T1_Pip2Pim1)), Pip1Pip2Pim1), contract_42_2(Proj2_3p1, T2_3p1)), T2_Pip2Pim1Pip1);
1801 double SF_Tp_D_VP_2 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3p1, T1_Pip1Pim1)), Pip1Pip2Pim1), contract_42_2(Proj2_3p1, T2_3p1)), T2_Pip1Pim1Pip2);
1802 double SF_Tp_D_VP_3 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3p2, T1_Pip2Pim2)), Pip1Pip2Pim2), contract_42_2(Proj2_3p2, T2_3p2)), T2_Pip2Pim2Pip1);
1803 double SF_Tp_D_VP_4 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3p2, T1_Pip1Pim2)), Pip1Pip2Pim2), contract_42_2(Proj2_3p2, T2_3p2)), T2_Pip1Pim2Pip2);
1805 amplitude += g_fitpara[9]*(SF_Tp_D_VP_1*RBW_a21320p_1*GS_rho770_21 + SF_Tp_D_VP_2*RBW_a21320p_1*GS_rho770_11 + SF_Tp_D_VP_3*RBW_a21320p_2*GS_rho770_22 + SF_Tp_D_VP_4*RBW_a21320p_2*GS_rho770_12);
1808 double SF_Tm_D_VP_1 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3m1, T1_Pim2Pip1)), Pim1Pim2Pip1), contract_42_2(Proj2_3m1, T2_3m1)), T2_Pip1Pim2Pim1);
1809 double SF_Tm_D_VP_2 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3m1, T1_Pim1Pip1)), Pim1Pim2Pip1), contract_42_2(Proj2_3m1, T2_3m1)), T2_Pip1Pim1Pim2);
1810 double SF_Tm_D_VP_3 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3m2, T1_Pim2Pip2)), Pim1Pim2Pip2), contract_42_2(Proj2_3m2, T2_3m2)), T2_Pip2Pim2Pim1);
1811 double SF_Tm_D_VP_4 = contract_22_0(contract_22_2(contract_31_2(contract_41_3(m_epsilon_uvmn, contract_21_1(Proj1_3m2, T1_Pim1Pip2)), Pim1Pim2Pip2), contract_42_2(Proj2_3m2, T2_3m2)), T2_Pip2Pim1Pim2);
1813 amplitude += g_fitpara[10]*(SF_Tm_D_VP_1*RBW_a21320m_1*GS_rho770_12 + SF_Tm_D_VP_2*RBW_a21320m_1*GS_rho770_11 + SF_Tm_D_VP_3*RBW_a21320m_2*GS_rho770_22 + SF_Tm_D_VP_4*RBW_a21320m_2*GS_rho770_21);
1816 double SF_Pm_P_VP_1 = contract_11_0(T1_Pim2Pip1,T1_Pip1Pim2Pim1);
1817 double SF_Pm_P_VP_2 = contract_11_0(T1_Pim1Pip1,T1_Pip1Pim1Pim2);
1818 double SF_Pm_P_VP_3 = contract_11_0(T1_Pim2Pip2,T1_Pip2Pim2Pim1);
1819 double SF_Pm_P_VP_4 = contract_11_0(T1_Pim1Pip2,T1_Pip2Pim1Pim2);
1821 amplitude += g_fitpara[11]*(SF_Pm_P_VP_1*GS_rho770_12*RBW_pi1300m_1 + SF_Pm_P_VP_2*GS_rho770_11*RBW_pi1300m_1 + SF_Pm_P_VP_3*GS_rho770_22*RBW_pi1300m_2 + SF_Pm_P_VP_4*GS_rho770_21*RBW_pi1300m_2);
1832 amplitude += g_fitpara[12]*g_fitpara[11]*(RBW_pi1300m_1*PiPiS_12_0 + RBW_pi1300m_1*PiPiS_11_0 + RBW_pi1300m_2*PiPiS_22_0 + RBW_pi1300m_2*PiPiS_21_0);
1835 amplitude += g_fitpara[13]*g_fitpara[11]*(RBW_pi1300m_1*PiPiS_12_6 + RBW_pi1300m_1*PiPiS_11_6 + RBW_pi1300m_2*PiPiS_22_6 + RBW_pi1300m_2*PiPiS_21_6);
1838 double SF_Pp_P_VP_1 = contract_11_0(T1_Pip2Pim1,T1_Pip2Pim1Pip1);
1839 double SF_Pp_P_VP_2 = contract_11_0(T1_Pip1Pim1,T1_Pip1Pim1Pip2);
1840 double SF_Pp_P_VP_3 = contract_11_0(T1_Pip2Pim2,T1_Pip2Pim2Pip1);
1841 double SF_Pp_P_VP_4 = contract_11_0(T1_Pip1Pim2,T1_Pip1Pim2Pip2);
1843 amplitude += g_fitpara[14]*(SF_Pp_P_VP_1*GS_rho770_21*RBW_pi1300p_1 + SF_Pp_P_VP_2*GS_rho770_11*RBW_pi1300p_1 + SF_Pp_P_VP_3*GS_rho770_22*RBW_pi1300p_2 + SF_Pp_P_VP_4*GS_rho770_12*RBW_pi1300p_2);
1854 amplitude += g_fitpara[12]*g_fitpara[14]*(RBW_pi1300p_1*PiPiS_21_0 + RBW_pi1300p_1*PiPiS_11_0 + RBW_pi1300p_2*PiPiS_22_0 + RBW_pi1300p_2*PiPiS_12_0);
1857 amplitude += g_fitpara[13]*g_fitpara[14]*(RBW_pi1300p_1*PiPiS_21_6 + RBW_pi1300p_1*PiPiS_11_6 + RBW_pi1300p_2*PiPiS_22_6 + RBW_pi1300p_2*PiPiS_12_6);
1860 double SF_VV_S_1 = contract_11_0(T1_Pip1Pim1, T1_Pip2Pim2);
1861 double SF_VV_S_3 = contract_11_0(T1_Pip1Pim2, T1_Pip2Pim1);
1863 amplitude += g_fitpara[15]*(SF_VV_S_1*GS_rho770_11*GS_rho770_22+SF_VV_S_3*GS_rho770_12*GS_rho770_21);
1866 double SF_VV_P_1 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(m_epsilon_uvmn, T1_Pip1Pim1),T1_Pip2Pim2),T1_2z11), D0);
1867 double SF_VV_P_2 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(m_epsilon_uvmn, T1_Pip2Pim2),T1_Pip1Pim1),T1_2z12), D0);
1868 double SF_VV_P_3 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(m_epsilon_uvmn, T1_Pip1Pim2),T1_Pip2Pim1),T1_2z21), D0);
1869 double SF_VV_P_4 = contract_11_0(contract_21_1(contract_31_2(contract_41_3(m_epsilon_uvmn, T1_Pip2Pim1),T1_Pip1Pim2),T1_2z22), D0);
1871 amplitude += g_fitpara[16]*(SF_VV_P_1*GS_rho770_11*GS_rho770_22+SF_VV_P_3*GS_rho770_12*GS_rho770_21);
1874 double SF_VV_D_1 = contract_11_0(contract_21_1(T2_2z11,T1_Pip2Pim2), T1_Pip1Pim1);
1875 double SF_VV_D_3 = contract_11_0(contract_21_1(T2_2z21,T1_Pip2Pim1), T1_Pip1Pim2);
1877 amplitude += g_fitpara[17]*(SF_VV_D_1*GS_rho770_11*GS_rho770_22+SF_VV_D_3*GS_rho770_12*GS_rho770_21);
1880 amplitude += g_fitpara[18]*(SF_VV_P_1*GS_rho770_11*GS_rho1450_22+SF_VV_P_2*GS_rho770_22*GS_rho1450_11 + SF_VV_P_3*GS_rho770_12*GS_rho1450_21 + SF_VV_P_3*GS_rho770_21*GS_rho1450_12);
1883 double SF_VS_P_1 = contract_11_0(T1_Pip1Pim1,T1_2z11);
1884 double SF_VS_P_2 = contract_11_0(T1_Pip2Pim2,T1_2z12);
1885 double SF_VS_P_3 = contract_11_0(T1_Pip1Pim2,T1_2z21);
1886 double SF_VS_P_4 = contract_11_0(T1_Pip2Pim1,T1_2z22);
1888 amplitude += g_fitpara[19]*(SF_VS_P_1*GS_rho770_11*PiPiS_22_0 + SF_VS_P_2*GS_rho770_22*PiPiS_11_0 + SF_VS_P_3*GS_rho770_12*PiPiS_21_0 + SF_VS_P_4*GS_rho770_21*PiPiS_12_0);
1889 amplitude += g_fitpara[20]*(SF_VS_P_1*GS_rho770_11*PiPiS_22_5 + SF_VS_P_2*GS_rho770_22*PiPiS_11_5 + SF_VS_P_3*GS_rho770_12*PiPiS_21_5 + SF_VS_P_4*GS_rho770_21*PiPiS_12_5);
1890 amplitude += g_fitpara[21]*(SF_VS_P_1*GS_rho770_11*PiPiS_22_6 + SF_VS_P_2*GS_rho770_22*PiPiS_11_6 + SF_VS_P_3*GS_rho770_12*PiPiS_21_6 + SF_VS_P_4*GS_rho770_21*PiPiS_12_6);
1894 amplitude += g_fitpara[22]*(PiPiS_11_0*PiPiS_22_0 + PiPiS_12_0*PiPiS_21_0 + PiPiS_22_0*PiPiS_11_0 + PiPiS_21_0*PiPiS_12_0);
1895 amplitude += g_fitpara[23]*(PiPiS_11_0*PiPiS_22_1 + PiPiS_12_0*PiPiS_21_1 + PiPiS_22_0*PiPiS_11_1 + PiPiS_21_0*PiPiS_12_1);
1896 amplitude += g_fitpara[24]*(PiPiS_11_1*PiPiS_22_1 + PiPiS_12_1*PiPiS_21_1 + PiPiS_22_1*PiPiS_11_1 + PiPiS_21_1*PiPiS_12_1);
1897 amplitude += g_fitpara[25]*(PiPiS_11_1*PiPiS_22_5 + PiPiS_12_1*PiPiS_21_5 + PiPiS_22_1*PiPiS_11_5 + PiPiS_21_1*PiPiS_12_5);
1898 amplitude += g_fitpara[26]*(PiPiS_11_5*PiPiS_22_5 + PiPiS_12_5*PiPiS_21_5 + PiPiS_22_5*PiPiS_11_5 + PiPiS_21_5*PiPiS_12_5);
1899 amplitude += g_fitpara[27]*(PiPiS_11_5*PiPiS_22_6 + PiPiS_12_5*PiPiS_21_6 + PiPiS_22_5*PiPiS_11_6 + PiPiS_21_5*PiPiS_12_6);
1902 double SF_TS_D_1 = contract_22_0(T2_Pip1Pim1,T2_2z11);
1903 double SF_TS_D_2 = contract_22_0(T2_Pip2Pim2,T2_2z12);
1904 double SF_TS_D_3 = contract_22_0(T2_Pip1Pim2,T2_2z21);
1905 double SF_TS_D_4 = contract_22_0(T2_Pip2Pim1,T2_2z22);
1907 amplitude += g_fitpara[28]*(SF_TS_D_1*RBW_f21270_11*PiPiS_22_5 + SF_TS_D_2*RBW_f21270_22*PiPiS_11_5 + SF_TS_D_3*RBW_f21270_12*PiPiS_21_5 + SF_TS_D_4*RBW_f21270_21*PiPiS_12_5);
1908 amplitude += g_fitpara[29]*(SF_TS_D_1*RBW_f21270_11*PiPiS_22_6 + SF_TS_D_2*RBW_f21270_22*PiPiS_11_6 + SF_TS_D_3*RBW_f21270_12*PiPiS_21_6 + SF_TS_D_4*RBW_f21270_21*PiPiS_12_6);
double sin(const BesAngle a)
double cos(const BesAngle a)
double P(RecMdcKalTrack *trk)
TFile f("ana_bhabha660a_dqa_mcPat_zy_old.root")
EvtTensor3C eps(const EvtVector3R &v)
*******INTEGER m_nBinMax INTEGER m_NdiMax !No of bins in histogram for cell exploration division $ !Last vertex $ !Last active cell $ !Last cell in buffer $ !No of sampling when dividing cell $ !No of function total $ !Flag for random ceel for $ !Flag for type of for WtMax $ !Flag which decides whether vertices are included in the sampling $ entire domain is hyp !Maximum effective eevents per saves r n generator level $ !Flag for chat level in output
****INTEGER imax DOUBLE PRECISION m_pi *DOUBLE PRECISION m_amfin DOUBLE PRECISION m_Chfin DOUBLE PRECISION m_Xenph DOUBLE PRECISION m_sinw2 DOUBLE PRECISION m_GFermi DOUBLE PRECISION m_MfinMin DOUBLE PRECISION m_ta2 INTEGER m_out INTEGER m_KeyFSR INTEGER m_KeyQCD *COMMON c_Semalib $ !copy of input $ !CMS energy $ !beam mass $ !final mass $ !beam charge $ !final charge $ !smallest final mass $ !Z mass $ !Z width $ !EW mixing angle $ !Gmu Fermi $ alphaQED at q
complex< double > Amp(vector< double > Pip1, vector< double > Pim1, vector< double > Pip2, vector< double > Pim2)