CGEM BOSS 6.6.5.i
BESIII Offline Software System
Loading...
Searching...
No Matches
Reconstruction/TrackUtil/TrackUtil-00-00-12/src/Helix.cxx
Go to the documentation of this file.
1//
2// $Id: Helix.cxx,v 1.8 2020/05/11 02:38:28 wangll Exp $
3//
4// Class Helix
5//
6// Author Date comments
7// Y.Ohnishi 03/01/1997 original version
8// Y.Ohnishi 06/03/1997 updated
9// Y.Iwasaki 17/02/1998 BFILED removed, func. name changed, func. added
10// J.Tanaka 06/12/1998 add some utilities.
11// Y.Iwasaki 07/07/1998 cache added to speed up
12//
13#include <iostream>
14#include <math.h>
15#include <float.h>
16#include "TrackUtil/Helix.h"
17#include "CLHEP/Matrix/Matrix.h"
18#include "GaudiKernel/StatusCode.h"
19#include "GaudiKernel/IInterface.h"
20#include "GaudiKernel/Kernel.h"
21#include "GaudiKernel/Service.h"
22#include "GaudiKernel/ISvcLocator.h"
23#include "GaudiKernel/SvcFactory.h"
24#include "GaudiKernel/IDataProviderSvc.h"
25#include "GaudiKernel/Bootstrap.h"
26#include "GaudiKernel/MsgStream.h"
27#include "GaudiKernel/SmartDataPtr.h"
28#include "GaudiKernel/IMessageSvc.h"
29
30// const double
31// Helix::m_BFIELD = 10.0; // KG
32// const double
33// Helix::m_ALPHA = 222.376063; // = 10000. / 2.99792458 / BFIELD
34// now Helix::m_ALPHA = 333.564095;
35
36const double
37M_PI2 = 2. * M_PI;
38
39const double
40M_PI4 = 4. * M_PI;
41
42const double
43M_PI8 = 8. * M_PI;
44
45const double Helix::ConstantAlpha = 333.564095;
46
48: m_matrixValid(true)
49{
50 StatusCode scmgn = Gaudi::svcLocator()->service("MagneticFieldSvc",m_pmgnIMF);
51 if(scmgn!=StatusCode::SUCCESS) {
52 std::cout<< "Unable to open Magnetic field service"<<std::endl;
53 }
54 m_bField = -10000*(m_pmgnIMF->getReferField());//zhangr 2012-09-06 for MagnField
55 //m_bField = 10000*(m_pmgnIMF->getReferField());
56 m_alpha = 10000. / 2.99792458 / m_bField;
57
58 HepPoint3D pivot(0,0,0);
59 HepVector a(5,0);
60 HepSymMatrix Ea(5,0);
61 m_pivot = pivot;
62 m_a = a;
63 m_Ea = Ea;
64 updateCache();
65}
66
68 const HepVector & a,
69 const HepSymMatrix & Ea)
70 : //m_bField(-10.0),
71 //m_alpha(-333.564095),
72 m_pivot(pivot),
73 m_a(a),
74 m_matrixValid(true),
75 m_Ea(Ea) {
76 StatusCode scmgn = Gaudi::svcLocator()->service("MagneticFieldSvc",m_pmgnIMF);
77 if(scmgn!=StatusCode::SUCCESS) {
78 std::cout<< "Unable to open Magnetic field service"<<std::endl;
79 }
80 m_bField = -10000*(m_pmgnIMF->getReferField());//zhangr 2012-09-06 for MagnField
81 //m_bField = 10000*(m_pmgnIMF->getReferField());
82 m_alpha = 10000. / 2.99792458 / m_bField;
83 // m_alpha = 10000. / 2.99792458 / m_bField;
84 // m_alpha = 333.564095;
85 updateCache();
86}
87
89 const HepVector & a)
90 : //m_bField(-10.0),
91 //m_alpha(-333.564095),
92 m_pivot(pivot),
93 m_a(a),
94 m_matrixValid(false),
95 m_Ea(HepSymMatrix(5,0)) {
96 StatusCode scmgn = Gaudi::svcLocator()->service("MagneticFieldSvc",m_pmgnIMF);
97 if(scmgn!=StatusCode::SUCCESS) {
98 // log << MSG::ERROR << "Unable to open Magnetic field service"<<endreq;
99 std::cout<< "Unable to open Magnetic field service"<<std::endl;
100 }
101 m_bField = -10000*(m_pmgnIMF->getReferField());//zhangr 2012-09-06 for MagnField
102 //m_bField = 10000*(m_pmgnIMF->getReferField());
103 m_alpha = 10000. / 2.99792458 / m_bField;
104 // m_alpha = 333.564095;
105 //cout<<"MdcFastTrakAlg:: bField,alpha: "<<m_bField<<" , "<<m_alpha<<endl;
106 updateCache();
107}
108
109Helix::Helix(const HepPoint3D & position,
110 const Hep3Vector & momentum,
111 double charge)
112 : //m_bField(-10.0),
113 //m_alpha(-333.564095),
114 m_pivot(position),
115 m_a(HepVector(5,0)),
116 m_matrixValid(false),
117 m_Ea(HepSymMatrix(5,0)) {
118 StatusCode scmgn = Gaudi::svcLocator()->service("MagneticFieldSvc",m_pmgnIMF);
119 if(scmgn!=StatusCode::SUCCESS) {
120 // log << MSG::ERROR << "Unable to open Magnetic field service"<<endreq;
121 std::cout<< "Unable to open Magnetic field service"<<std::endl;
122 }
123 m_bField = -10000*(m_pmgnIMF->getReferField());//zhangr 2012-09-06 for MagnField
124 //m_bField = 10000*(m_pmgnIMF->getReferField());
125 m_alpha = 10000. / 2.99792458 / m_bField;
126
127 m_a[0] = 0.;
128 m_a[1] = fmod(atan2(- momentum.x(), momentum.y())
129 + M_PI4, M_PI2);
130 m_a[3] = 0.;
131 double perp(momentum.perp());
132 if (perp != 0.0) {
133 m_a[2] = charge / perp;
134 m_a[4] = momentum.z() / perp;
135 }
136 else {
137 m_a[2] = charge * (DBL_MAX);
138 if (momentum.z() >= 0) {
139 m_a[4] = (DBL_MAX);
140 } else {
141 m_a[4] = -(DBL_MAX);
142 }
143 }
144 // m_alpha = 333.564095;
145 updateCache();
146}
147
150
152Helix::x(double phi) const {
153 //
154 // Calculate position (x,y,z) along helix.
155 //
156 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
157 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
158 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
159 //
160
161 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] +phi));
162 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] +phi));
163 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
164
165 return HepPoint3D(x, y, z);
166}
167
168double *
169Helix::x(double phi, double p[3]) const {
170 //
171 // Calculate position (x,y,z) along helix.
172 //
173 // x = x0 + dr * cos(phi0) + (alpha / kappa) * (cos(phi0) - cos(phi0+phi))
174 // y = y0 + dr * sin(phi0) + (alpha / kappa) * (sin(phi0) - sin(phi0+phi))
175 // z = z0 + dz - (alpha / kappa) * tan(lambda) * phi
176 //
177
178 p[0] = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi));
179 p[1] = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi));
180 p[2] = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
181
182 return p;
183}
184
186Helix::x(double phi, HepSymMatrix & Ex) const {
187 double x = m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] +phi));
188 double y = m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] +phi));
189 double z = m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi;
190
191 //
192 // Calculate position error matrix.
193 // Ex(phi) = (@x/@a)(Ea)(@x/@a)^T, phi is deflection angle to specify the
194 // point to be calcualted.
195 //
196 // HepMatrix dXDA(3, 5, 0);
197 // dXDA = delXDelA(phi);
198 // Ex.assign(dXDA * m_Ea * dXDA.T());
199
200 if (m_matrixValid) Ex = m_Ea.similarity(delXDelA(phi));
201 else Ex = m_Ea;
202
203 return HepPoint3D(x, y, z);
204}
205
206Hep3Vector
207Helix::momentum(double phi) const {
208 //
209 // Calculate momentum.
210 //
211 // Pt = | 1/kappa | (GeV/c)
212 //
213 // Px = -Pt * sin(phi0 + phi)
214 // Py = Pt * cos(phi0 + phi)
215 // Pz = Pt * tan(lambda)
216 //
217
218 double pt = fabs(m_pt);
219 double px = - pt * sin(m_ac[1] + phi);
220 double py = pt * cos(m_ac[1] + phi);
221 double pz = pt * m_ac[4];
222
223 return Hep3Vector(px, py, pz);
224}
225
226Hep3Vector
227Helix::momentum(double phi, HepSymMatrix & Em) const {
228 //
229 // Calculate momentum.
230 //
231 // Pt = | 1/kappa | (GeV/c)
232 //
233 // Px = -Pt * sin(phi0 + phi)
234 // Py = Pt * cos(phi0 + phi)
235 // Pz = Pt * tan(lambda)
236 //
237
238 double pt = fabs(m_pt);
239 double px = - pt * sin(m_ac[1] + phi);
240 double py = pt * cos(m_ac[1] + phi);
241 double pz = pt * m_ac[4];
242
243 if (m_matrixValid) Em = m_Ea.similarity(delMDelA(phi));
244 else Em = m_Ea;
245
246 return Hep3Vector(px, py, pz);
247}
248
249HepLorentzVector
250Helix::momentum(double phi, double mass) const {
251 //
252 // Calculate momentum.
253 //
254 // Pt = | 1/kappa | (GeV/c)
255 //
256 // Px = -Pt * sin(phi0 + phi)
257 // Py = Pt * cos(phi0 + phi)
258 // Pz = Pt * tan(lambda)
259 //
260 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
261
262 double pt = fabs(m_pt);
263 double px = - pt * sin(m_ac[1] + phi);
264 double py = pt * cos(m_ac[1] + phi);
265 double pz = pt * m_ac[4];
266 double E = sqrt(pt*pt*(1.+m_ac[4]*m_ac[4])+mass*mass);
267
268 return HepLorentzVector(px, py, pz, E);
269}
270
271
272HepLorentzVector
273Helix::momentum(double phi, double mass, HepSymMatrix & Em) const {
274 //
275 // Calculate momentum.
276 //
277 // Pt = | 1/kappa | (GeV/c)
278 //
279 // Px = -Pt * sin(phi0 + phi)
280 // Py = Pt * cos(phi0 + phi)
281 // Pz = Pt * tan(lambda)
282 //
283 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
284
285 double pt = fabs(m_pt);
286 double px = - pt * sin(m_ac[1] + phi);
287 double py = pt * cos(m_ac[1] + phi);
288 double pz = pt * m_ac[4];
289 double E = sqrt(pt*pt*(1.+m_ac[4]*m_ac[4])+mass*mass);
290
291 if (m_matrixValid) Em = m_Ea.similarity(del4MDelA(phi,mass));
292 else Em = m_Ea;
293
294 return HepLorentzVector(px, py, pz, E);
295}
296
297HepLorentzVector
299 double mass,
300 HepPoint3D & x,
301 HepSymMatrix & Emx) const {
302 //
303 // Calculate momentum.
304 //
305 // Pt = | 1/kappa | (GeV/c)
306 //
307 // Px = -Pt * sin(phi0 + phi)
308 // Py = Pt * cos(phi0 + phi)
309 // Pz = Pt * tan(lambda)
310 //
311 // E = sqrt( 1/kappa/kappa * (1+tan(lambda)*tan(lambda)) + mass*mass )
312
313 double pt = fabs(m_pt);
314 double px = - pt * sin(m_ac[1] + phi);
315 double py = pt * cos(m_ac[1] + phi);
316 double pz = pt * m_ac[4];
317 double E = sqrt(pt * pt * (1. + m_ac[4] * m_ac[4]) + mass * mass);
318
319 x.setX(m_pivot.x() + m_ac[0] * m_cp + m_r * (m_cp - cos(m_ac[1] + phi)));
320 x.setY(m_pivot.y() + m_ac[0] * m_sp + m_r * (m_sp - sin(m_ac[1] + phi)));
321 x.setZ(m_pivot.z() + m_ac[3] - m_r * m_ac[4] * phi);
322
323 if (m_matrixValid) Emx = m_Ea.similarity(del4MXDelA(phi,mass));
324 else Emx = m_Ea;
325
326 return HepLorentzVector(px, py, pz, E);
327}
328
329
330const HepPoint3D &
331Helix::pivot(const HepPoint3D & newPivot) {
332 const double & dr = m_ac[0];
333 const double & phi0 = m_ac[1];
334 const double & kappa = m_ac[2];
335 const double & dz = m_ac[3];
336 const double & tanl = m_ac[4];
337
338 double rdr = dr + m_r;
339 double phi = fmod(phi0 + M_PI4, M_PI2);
340 double csf0 = cos(phi);
341 double snf0 = (1. - csf0) * (1. + csf0);
342 snf0 = sqrt((snf0 > 0.) ? snf0 : 0.);
343 if(phi > M_PI) snf0 = - snf0;
344
345 double xc = m_pivot.x() + rdr * csf0;
346 double yc = m_pivot.y() + rdr * snf0;
347 double csf, snf;
348 if(m_r != 0.0) {
349 csf = (xc - newPivot.x()) / m_r;
350 snf = (yc - newPivot.y()) / m_r;
351 double anrm = sqrt(csf * csf + snf * snf);
352 if(anrm != 0.0) {
353 csf /= anrm;
354 snf /= anrm;
355 phi = atan2(snf, csf);
356 } else {
357 csf = 1.0;
358 snf = 0.0;
359 phi = 0.0;
360 }
361 } else {
362 csf = 1.0;
363 snf = 0.0;
364 phi = 0.0;
365 }
366 double phid = fmod(phi - phi0 + M_PI8, M_PI2);
367 if(phid > M_PI) phid = phid - M_PI2;
368 double drp = (m_pivot.x() + dr * csf0 + m_r * (csf0 - csf) - newPivot.x())
369 * csf
370 + (m_pivot.y() + dr * snf0 + m_r * (snf0 - snf) - newPivot.y()) * snf;
371 double dzp = m_pivot.z() + dz - m_r * tanl * phid - newPivot.z();
372
373 HepVector ap(5);
374 ap[0] = drp;
375 ap[1] = fmod(phi + M_PI4, M_PI2);
376 ap[2] = kappa;
377 ap[3] = dzp;
378 ap[4] = tanl;
379
380 // if (m_matrixValid) m_Ea.assign(delApDelA(ap) * m_Ea * delApDelA(ap).T());
381 if (m_matrixValid) m_Ea = m_Ea.similarity(delApDelA(ap));
382
383 m_a = ap;
384 m_pivot = newPivot;
385
386 //...Are these needed?...iw...
387 updateCache();
388 return m_pivot;
389}
390
391void
392Helix::set(const HepPoint3D & pivot,
393 const HepVector & a,
394 const HepSymMatrix & Ea) {
395 m_pivot = pivot;
396 m_a = a;
397 m_Ea = Ea;
398 m_matrixValid = true;
399 updateCache();
400}
401
402Helix &
403Helix::operator = (const Helix & i) {
404 if (this == & i) return * this;
405
406 m_bField = i.m_bField;
407 m_alpha = i.m_alpha;
408 m_pivot = i.m_pivot;
409 m_a = i.m_a;
410 m_Ea = i.m_Ea;
411 m_matrixValid = i.m_matrixValid;
412
413 m_center = i.m_center;
414 m_cp = i.m_cp;
415 m_sp = i.m_sp;
416 m_pt = i.m_pt;
417 m_r = i.m_r;
418 m_ac[0] = i.m_ac[0];
419 m_ac[1] = i.m_ac[1];
420 m_ac[2] = i.m_ac[2];
421 m_ac[3] = i.m_ac[3];
422 m_ac[4] = i.m_ac[4];
423
424 return * this;
425}
426
428{
429 m_bField = i.m_bField;
430 m_alpha = i.m_alpha;
431 m_pivot = i.m_pivot;
432 m_a = i.m_a;
433 m_Ea = i.m_Ea;
434 m_matrixValid = i.m_matrixValid;
435
436 m_center = i.m_center;
437 m_cp = i.m_cp;
438 m_sp = i.m_sp;
439 m_pt = i.m_pt;
440 m_r = i.m_r;
441 m_ac[0] = i.m_ac[0];
442 m_ac[1] = i.m_ac[1];
443 m_ac[2] = i.m_ac[2];
444 m_ac[3] = i.m_ac[3];
445 m_ac[4] = i.m_ac[4];
446}
447
448
449void
450Helix::updateCache(void) {
451 //
452 // Calculate Helix center( xc, yc ).
453 //
454 // xc = x0 + (dr + (alpha / kappa)) * cos(phi0) (cm)
455 // yc = y0 + (dr + (alpha / kappa)) * sin(phi0) (cm)
456 //
457
458 m_ac[0] = m_a[0];
459 m_ac[1] = m_a[1];
460 m_ac[2] = m_a[2];
461 m_ac[3] = m_a[3];
462 m_ac[4] = m_a[4];
463
464 m_cp = cos(m_ac[1]);
465 m_sp = sin(m_ac[1]);
466 if (m_ac[2] != 0.0) {
467 m_pt = 1. / m_ac[2];
468 m_r = m_alpha / m_ac[2];
469 }
470 else {
471 m_pt = (DBL_MAX);
472 m_r = (DBL_MAX);
473 }
474
475 double x = m_pivot.x() + (m_ac[0] + m_r) * m_cp;
476 double y = m_pivot.y() + (m_ac[0] + m_r) * m_sp;
477 m_center.setX(x);
478 m_center.setY(y);
479 m_center.setZ(0.);
480}
481
482HepMatrix
483Helix::delApDelA(const HepVector & ap) const {
484 //
485 // Calculate Jacobian (@ap/@a)
486 // Vector ap is new helix parameters and a is old helix parameters.
487 //
488
489 HepMatrix dApDA(5,5,0);
490
491 const double & dr = m_ac[0];
492 const double & phi0 = m_ac[1];
493 const double & cpa = m_ac[2];
494 //const double & dz = m_ac[3];
495 const double & tnl = m_ac[4];
496
497 double drp = ap[0];
498 double phi0p = ap[1];
499 //double cpap = ap[2];
500 //double dzp = ap[3];
501 //double tnlp = ap[4];
502
503 double rdr = m_r + dr;
504 double rdrpr;
505 if ((m_r + drp) != 0.0) {
506 rdrpr = 1. / (m_r + drp);
507 } else {
508 rdrpr = (DBL_MAX);
509 }
510 // double csfd = cos(phi0)*cos(phi0p) + sin(phi0)*sin(phi0p);
511 // double snfd = cos(phi0)*sin(phi0p) - sin(phi0)*cos(phi0p);
512 double csfd = cos(phi0p - phi0);
513 double snfd = sin(phi0p - phi0);
514 double phid = fmod(phi0p - phi0 + M_PI8, M_PI2);
515 if (phid > M_PI) phid = phid - M_PI2;
516
517 dApDA[0][0] = csfd;
518 dApDA[0][1] = rdr*snfd;
519 if(cpa!=0.0) {
520 dApDA[0][2] = (m_r/cpa)*( 1.0 - csfd );
521 } else {
522 dApDA[0][2] = (DBL_MAX);
523 }
524
525 dApDA[1][0] = - rdrpr*snfd;
526 dApDA[1][1] = rdr*rdrpr*csfd;
527 if(cpa!=0.0) {
528 dApDA[1][2] = (m_r/cpa)*rdrpr*snfd;
529 } else {
530 dApDA[1][2] = (DBL_MAX);
531 }
532
533 dApDA[2][2] = 1.0;
534
535 dApDA[3][0] = m_r*rdrpr*tnl*snfd;
536 dApDA[3][1] = m_r*tnl*(1.0 - rdr*rdrpr*csfd);
537 if(cpa!=0.0) {
538 dApDA[3][2] = (m_r/cpa)*tnl*(phid - m_r*rdrpr*snfd);
539 } else {
540 dApDA[3][2] = (DBL_MAX);
541 }
542 dApDA[3][3] = 1.0;
543 dApDA[3][4] = - m_r*phid;
544
545 dApDA[4][4] = 1.0;
546
547 return dApDA;
548}
549
550HepMatrix
551Helix::delXDelA(double phi) const {
552 //
553 // Calculate Jacobian (@x/@a)
554 // Vector a is helix parameters and phi is internal parameter
555 // which specifys the point to be calculated for Ex(phi).
556 //
557
558 HepMatrix dXDA(3,5,0);
559
560 const double & dr = m_ac[0];
561 const double & phi0 = m_ac[1];
562 const double & cpa = m_ac[2];
563 //const double & dz = m_ac[3];
564 const double & tnl = m_ac[4];
565
566 double cosf0phi = cos(phi0 + phi);
567 double sinf0phi = sin(phi0 + phi);
568
569 dXDA[0][0] = m_cp;
570 dXDA[0][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
571 if(cpa!=0.0) {
572 dXDA[0][2] = - (m_r / cpa) * (m_cp - cosf0phi);
573 } else {
574 dXDA[0][2] = (DBL_MAX);
575 }
576 // dXDA[0][3] = 0.0;
577 // dXDA[0][4] = 0.0;
578
579 dXDA[1][0] = m_sp;
580 dXDA[1][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
581 if(cpa!=0.0) {
582 dXDA[1][2] = - (m_r / cpa) * (m_sp - sinf0phi);
583 } else {
584 dXDA[1][2] = (DBL_MAX);
585 }
586 // dXDA[1][3] = 0.0;
587 // dXDA[1][4] = 0.0;
588
589 // dXDA[2][0] = 0.0;
590 // dXDA[2][1] = 0.0;
591 if(cpa!=0.0) {
592 dXDA[2][2] = (m_r / cpa) * tnl * phi;
593 } else {
594 dXDA[2][2] = (DBL_MAX);
595 }
596 dXDA[2][3] = 1.0;
597 dXDA[2][4] = - m_r * phi;
598
599 return dXDA;
600}
601
602
603
604HepMatrix
605Helix::delMDelA(double phi) const {
606 //
607 // Calculate Jacobian (@m/@a)
608 // Vector a is helix parameters and phi is internal parameter.
609 // Vector m is momentum.
610 //
611
612 HepMatrix dMDA(3,5,0);
613
614 const double & phi0 = m_ac[1];
615 const double & cpa = m_ac[2];
616 const double & tnl = m_ac[4];
617
618 double cosf0phi = cos(phi0+phi);
619 double sinf0phi = sin(phi0+phi);
620
621 double rho;
622 if(cpa != 0.)rho = 1./cpa;
623 else rho = (DBL_MAX);
624
625 double charge = 1.;
626 if(cpa < 0.)charge = -1.;
627
628 dMDA[0][1] = -fabs(rho)*cosf0phi;
629 dMDA[0][2] = charge*rho*rho*sinf0phi;
630
631 dMDA[1][1] = -fabs(rho)*sinf0phi;
632 dMDA[1][2] = -charge*rho*rho*cosf0phi;
633
634 dMDA[2][2] = -charge*rho*rho*tnl;
635 dMDA[2][4] = fabs(rho);
636
637 return dMDA;
638}
639
640
641HepMatrix
642Helix::del4MDelA(double phi, double mass) const {
643 //
644 // Calculate Jacobian (@4m/@a)
645 // Vector a is helix parameters and phi is internal parameter.
646 // Vector 4m is 4 momentum.
647 //
648
649 HepMatrix d4MDA(4,5,0);
650
651 double phi0 = m_ac[1];
652 double cpa = m_ac[2];
653 double tnl = m_ac[4];
654
655 double cosf0phi = cos(phi0+phi);
656 double sinf0phi = sin(phi0+phi);
657
658 double rho;
659 if(cpa != 0.)rho = 1./cpa;
660 else rho = (DBL_MAX);
661
662 double charge = 1.;
663 if(cpa < 0.)charge = -1.;
664
665 double E = sqrt(rho*rho*(1.+tnl*tnl)+mass*mass);
666
667 d4MDA[0][1] = -fabs(rho)*cosf0phi;
668 d4MDA[0][2] = charge*rho*rho*sinf0phi;
669
670 d4MDA[1][1] = -fabs(rho)*sinf0phi;
671 d4MDA[1][2] = -charge*rho*rho*cosf0phi;
672
673 d4MDA[2][2] = -charge*rho*rho*tnl;
674 d4MDA[2][4] = fabs(rho);
675
676 if (cpa != 0.0 && E != 0.0) {
677 d4MDA[3][2] = (-1.-tnl*tnl)/(cpa*cpa*cpa*E);
678 d4MDA[3][4] = tnl/(cpa*cpa*E);
679 } else {
680 d4MDA[3][2] = (DBL_MAX);
681 d4MDA[3][4] = (DBL_MAX);
682 }
683 return d4MDA;
684}
685
686
687HepMatrix
688Helix::del4MXDelA(double phi, double mass) const {
689 //
690 // Calculate Jacobian (@4mx/@a)
691 // Vector a is helix parameters and phi is internal parameter.
692 // Vector 4xm is 4 momentum and position.
693 //
694
695 HepMatrix d4MXDA(7,5,0);
696
697 const double & dr = m_ac[0];
698 const double & phi0 = m_ac[1];
699 const double & cpa = m_ac[2];
700 //const double & dz = m_ac[3];
701 const double & tnl = m_ac[4];
702
703 double cosf0phi = cos(phi0+phi);
704 double sinf0phi = sin(phi0+phi);
705
706 double rho;
707 if(cpa != 0.)rho = 1./cpa;
708 else rho = (DBL_MAX);
709
710 double charge = 1.;
711 if(cpa < 0.)charge = -1.;
712
713 double E = sqrt(rho * rho * (1. + tnl * tnl) + mass * mass);
714
715 d4MXDA[0][1] = - fabs(rho) * cosf0phi;
716 d4MXDA[0][2] = charge * rho * rho * sinf0phi;
717
718 d4MXDA[1][1] = - fabs(rho) * sinf0phi;
719 d4MXDA[1][2] = - charge * rho * rho * cosf0phi;
720
721 d4MXDA[2][2] = - charge * rho * rho * tnl;
722 d4MXDA[2][4] = fabs(rho);
723
724 if (cpa != 0.0 && E != 0.0) {
725 d4MXDA[3][2] = (- 1. - tnl * tnl) / (cpa * cpa * cpa * E);
726 d4MXDA[3][4] = tnl / (cpa * cpa * E);
727 } else {
728 d4MXDA[3][2] = (DBL_MAX);
729 d4MXDA[3][4] = (DBL_MAX);
730 }
731
732 d4MXDA[4][0] = m_cp;
733 d4MXDA[4][1] = - dr * m_sp + m_r * (- m_sp + sinf0phi);
734 if (cpa != 0.0) {
735 d4MXDA[4][2] = - (m_r / cpa) * (m_cp - cosf0phi);
736 } else {
737 d4MXDA[4][2] = (DBL_MAX);
738 }
739
740 d4MXDA[5][0] = m_sp;
741 d4MXDA[5][1] = dr * m_cp + m_r * (m_cp - cosf0phi);
742 if (cpa != 0.0) {
743 d4MXDA[5][2] = - (m_r / cpa) * (m_sp - sinf0phi);
744
745 d4MXDA[6][2] = (m_r / cpa) * tnl * phi;
746 } else {
747 d4MXDA[5][2] = (DBL_MAX);
748
749 d4MXDA[6][2] = (DBL_MAX);
750 }
751
752 d4MXDA[6][3] = 1.;
753 d4MXDA[6][4] = - m_r * phi;
754
755 return d4MXDA;
756}
757
758void
760 m_matrixValid = false;
761 m_Ea *= 0.;
762}
763
764double Helix::IntersectCylinder(double r) const
765{
766 double m_rad = radius();
767 double l = center().perp();
768
769 double cosPhi = (m_rad * m_rad + l * l - r * r) / (2 * m_rad * l);
770
771 if(cosPhi < -1 || cosPhi > 1) return 0;
772
773 double dPhi = center().phi() - acos(cosPhi) - phi0();
774
775 if(dPhi < -M_PI) dPhi += 2 * M_PI;
776
777 return dPhi;
778}
779
780double Helix::flightArc(HepPoint3D& hit) const
781{
782 /*
783 double rc = center().perp();
784 //double l = center().perp(hit);
785 double l = sqrt( (center().x()-hit.x()) * (center().x()-hit.x()) + (center().y()-hit.y()) * (center().y()-hit.y()) );
786 double rHit = hit.perp();
787 double cosPhi = (rc*rc + l * l - rHit * rHit) / (2 * rc * l);
788 //double cosPhi = (m_rad * m_rad + l * l - r * r) / (2 * m_rad * l);
789 if(cosPhi < -1 || cosPhi > 1) return 0;
790 double dPhi = acos(cosPhi);// [0, pi)
791 //double phiTrkFlt = IntersectCylinder(rHit);
792 //double arcLength = rc*dPhi;
793 double xHit = hit.getHitPoint().x();
794 double yHit = hit.getHitPoint().y();
795 double xCenter = center().x();
796 double yCenter = center().y();
797 double leftOrRight = xHit*yCenter - xCenter*yHit;
798 */
799 double dphi = dPhi(hit);
800 double arcLength = fabs(m_r*dphi);
801 return arcLength;
802}
803
804double Helix::flightArc(double r) const
805{
806 double phi_turn = IntersectCylinder(r);
807 double arcLength = m_r*phi_turn;
808 arcLength = fabs(arcLength);
809 return arcLength;
810}
811
813{
814 /*
815 double rc = center().perp();
816 //double l = center().perp(hit);
817 double l = sqrt( (center().x()-hit.x()) * (center().x()-hit.x()) + (center().y()-hit.y()) * (center().y()-hit.y()) );
818 double rHit = hit.perp();
819 double cosPhi = (rc*rc + l * l - rHit * rHit) / (2 * rc * l);
820 //double cosPhi = (m_rad * m_rad + l * l - r * r) / (2 * m_rad * l);
821 if(cosPhi < -1 || cosPhi > 1) return 0;
822 double dPhi = acos(cosPhi);
823 //double dPhi = center().phi() - acos(cosPhi) - phi0();
824 //double phiTrkFlt = IntersectCylinder(rHit);
825 double arcLength = rc*dPhi;
826 */
827
828 double arcLength = flightArc(hit);
829
830 double cosLambda = 1/sqrt(1+m_ac[4]*m_ac[4]);
831 double flightLength = arcLength/cosLambda;
832 return flightLength;
833}
834
835double Helix::dPhi(HepPoint3D& hit) const
836{
837 double isClockWise = m_r/fabs(m_r);
838 double x_cw = center().x()-hit.x();
839 double y_cw = center().y()-hit.y();
840 x_cw = isClockWise*x_cw;
841 y_cw = isClockWise*y_cw;
842 double phi_cw = atan2(y_cw,x_cw);
843 double dphi = phi_cw-phi0();
844 if(isClockWise>0)
845 {
846 while(dphi>0) dphi-=2*M_PI;
847 while(dphi<-2*M_PI) dphi+=2*M_PI;
848 }
849 else {
850 while(dphi<0) dphi+=2*M_PI;
851 while(dphi>2*M_PI) dphi-=2*M_PI;
852 }
853 return dphi;
854}
double sin(const BesAngle a)
Definition BesAngle.h:210
double cos(const BesAngle a)
Definition BesAngle.h:213
**********INTEGER nmxhep !maximum number of particles DOUBLE PRECISION vhep INTEGER jdahep COMMON hepevt $ !serial number $ !number of particles $ !status code $ !particle ident KF $ !parent particles $ !childreen particles $ !four momentum
double mass
Double_t x[10]
HepGeom::Point3D< double > HepPoint3D
Definition Gam4pikp.cxx:37
#define DBL_MAX
Definition KalFitAlg.h:13
NTuple::Item< double > m_pt
Definition MdcHistItem.h:76
#define M_PI
Definition TConstant.h:4
HepMatrix delApDelA(const HepVector &ap) const
const HepPoint3D & center(void) const
returns position of helix center(z = 0.);
void set(const HepPoint3D &pivot, const HepVector &a, const HepSymMatrix &Ea)
sets helix pivot position, parameters, and error matrix.
void ignoreErrorMatrix(void)
unsets error matrix. Error calculations will be ignored after this function call until an error matri...
HepMatrix del4MXDelA(double phi, double mass) const
Hep3Vector momentum(double dPhi=0.) const
returns momentum vector after rotating angle dPhi in phi direction.
const HepSymMatrix & Ea(void) const
returns error matrix.
HepPoint3D x(double dPhi=0.) const
returns position after rotating angle dPhi in phi direction.
HepMatrix del4MDelA(double phi, double mass) const
double radius(void) const
returns radious of helix.
double dr(void) const
returns an element of parameters.
const HepVector & a(void) const
returns helix parameters.
const HepPoint3D & pivot(void) const
returns pivot position.
virtual double getReferField()=0