Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DormandPrince745.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4DormandPrince745 implementation
27//
28// DormandPrince7 - 5(4) non-FSAL
29// definition of the stepper() method that evaluates one step in
30// field propagation.
31// The coefficients and the algorithm have been adapted from
32//
33// J. R. Dormand and P. J. Prince, "A family of embedded Runge-Kutta formulae"
34// Journal of computational and applied Math., vol.6, no.1, pp.19-26, 1980.
35//
36// The Butcher table of the Dormand-Prince-7-4-5 method is as follows :
37//
38// 0 |
39// 1/5 | 1/5
40// 3/10| 3/40 9/40
41// 4/5 | 44/45 56/15 32/9
42// 8/9 | 19372/6561 25360/2187 64448/6561 212/729
43// 1 | 9017/3168 355/33 46732/5247 49/176 5103/18656
44// 1 | 35/384 0 500/1113 125/192 2187/6784 11/84
45// ------------------------------------------------------------------------
46// 35/384 0 500/1113 125/192 2187/6784 11/84 0
47// 5179/57600 0 7571/16695 393/640 92097/339200 187/2100 1/40
48//
49// Created: Somnath Banerjee, Google Summer of Code 2015, 25 May 2015
50// Supervision: John Apostolakis, CERN
51// --------------------------------------------------------------------
52
53#include "G4DormandPrince745.hh"
54#include "G4LineSection.hh"
55
56#include <cstring>
57
58using namespace field_utils;
59
60const G4String G4DormandPrince745::gStepperType =
61 G4String("G4DormandPrince745: 5th order");
62
63const G4String G4DormandPrince745::gStepperDescription= G4String(
64 "Embedeed 5th order Runge-Kutta stepper - 7 stages, FSAL, Interpolating.");
65
66
68 G4int noIntegrationVariables)
69 : G4MagIntegratorStepper(equation, noIntegrationVariables)
70{
71}
72
74 const G4double dydx[],
75 G4double hstep,
76 G4double yOutput[],
77 G4double yError[],
78 G4double dydxOutput[])
79{
80 Stepper(yInput, dydx, hstep, yOutput, yError);
81 field_utils::copy(dydxOutput, ak7);
82}
83
84// Stepper
85//
86// Passing in the value of yInput[],the first time dydx[] and Step length
87// Giving back yOut and yErr arrays for output and error respectively
88//
90 const G4double dydx[],
91 G4double hstep,
92 G4double yOut[],
93 G4double yErr[])
94{
95 // The various constants defined on the basis of butcher tableu
96 //
97 const G4double b21 = 0.2,
98 b31 = 3.0 / 40.0, b32 = 9.0 / 40.0,
99 b41 = 44.0 / 45.0, b42 = -56.0 / 15.0, b43 = 32.0/9.0,
100
101 b51 = 19372.0 / 6561.0, b52 = -25360.0 / 2187.0, b53 = 64448.0 / 6561.0,
102 b54 = -212.0 / 729.0,
103
104 b61 = 9017.0 / 3168.0 , b62 = -355.0 / 33.0,
105 b63 = 46732.0 / 5247.0, b64 = 49.0 / 176.0,
106 b65 = -5103.0 / 18656.0,
107
108 b71 = 35.0 / 384.0, b72 = 0.,
109 b73 = 500.0 / 1113.0, b74 = 125.0 / 192.0,
110 b75 = -2187.0 / 6784.0, b76 = 11.0 / 84.0,
111
112 //Sum of columns, sum(bij) = ei
113 // e1 = 0. ,
114 // e2 = 1.0/5.0 ,
115 // e3 = 3.0/10.0 ,
116 // e4 = 4.0/5.0 ,
117 // e5 = 8.0/9.0 ,
118 // e6 = 1.0 ,
119 // e7 = 1.0 ,
120
121 // Difference between the higher and the lower order method coeff. :
122 // b7j are the coefficients of higher order
123
124 dc1 = -(b71 - 5179.0 / 57600.0),
125 dc2 = -(b72 - .0),
126 dc3 = -(b73 - 7571.0 / 16695.0),
127 dc4 = -(b74 - 393.0 / 640.0),
128 dc5 = -(b75 + 92097.0 / 339200.0),
129 dc6 = -(b76 - 187.0 / 2100.0),
130 dc7 = -(- 1.0 / 40.0);
131
132 const G4int numberOfVariables = GetNumberOfVariables();
133 State yTemp = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.};
134
135 // The number of variables to be integrated over
136 //
137 yOut[7] = yTemp[7] = yInput[7];
138
139 // Saving yInput because yInput and yOut can be aliases for same array
140 //
141 for(G4int i = 0; i < numberOfVariables; ++i)
142 {
143 fyIn[i] = yInput[i];
144 }
145 // RightHandSide(yIn, dydx); // Not done! 1st stage
146
147 for(G4int i = 0; i < numberOfVariables; ++i)
148 {
149 yTemp[i] = fyIn[i] + b21 * hstep * dydx[i];
150 }
151 RightHandSide(yTemp, ak2); // 2nd stage
152
153 for(G4int i = 0; i < numberOfVariables; ++i)
154 {
155 yTemp[i] = fyIn[i] + hstep * (b31 * dydx[i] + b32 * ak2[i]);
156 }
157 RightHandSide(yTemp, ak3); // 3rd stage
158
159 for(G4int i = 0; i < numberOfVariables; ++i)
160 {
161 yTemp[i] = fyIn[i] + hstep * (
162 b41 * dydx[i] + b42 * ak2[i] + b43 * ak3[i]);
163 }
164 RightHandSide(yTemp, ak4); // 4th stage
165
166 for(G4int i = 0; i < numberOfVariables; ++i)
167 {
168 yTemp[i] = fyIn[i] + hstep * (
169 b51 * dydx[i] + b52 * ak2[i] + b53 * ak3[i] + b54 * ak4[i]);
170 }
171 RightHandSide(yTemp, ak5); // 5th stage
172
173 for(G4int i = 0; i < numberOfVariables; ++i)
174 {
175 yTemp[i] = fyIn[i] + hstep * (
176 b61 * dydx[i] + b62 * ak2[i] +
177 b63 * ak3[i] + b64 * ak4[i] + b65 * ak5[i]);
178 }
179 RightHandSide(yTemp, ak6); // 6th stage
180
181 for(G4int i = 0; i < numberOfVariables; ++i)
182 {
183 yOut[i] = fyIn[i] + hstep * (
184 b71 * dydx[i] + b72 * ak2[i] + b73 * ak3[i] +
185 b74 * ak4[i] + b75 * ak5[i] + b76 * ak6[i]);
186 }
187 RightHandSide(yOut, ak7); // 7th and Final stage
188
189 for(G4int i = 0; i < numberOfVariables; ++i)
190 {
191 yErr[i] = hstep * (
192 dc1 * dydx[i] + dc2 * ak2[i] +
193 dc3 * ak3[i] + dc4 * ak4[i] +
194 dc5 * ak5[i] + dc6 * ak6[i] + dc7 * ak7[i]
195 ) + 1.5e-18;
196
197 // Store Input and Final values, for possible use in calculating chord
198 //
199 fyOut[i] = yOut[i];
200 fdydxIn[i] = dydx[i];
201 }
202
203 fLastStepLength = hstep;
204}
205
207{
208 // Coefficients were taken from Some Practical Runge-Kutta Formulas
209 // by Lawrence F. Shampine, page 149, c*
210 //
211 const G4double hf1 = 6025192743.0 / 30085553152.0,
212 hf3 = 51252292925.0 / 65400821598.0,
213 hf4 = - 2691868925.0 / 45128329728.0,
214 hf5 = 187940372067.0 / 1594534317056.0,
215 hf6 = - 1776094331.0 / 19743644256.0,
216 hf7 = 11237099.0 / 235043384.0;
217
218 G4ThreeVector mid;
219
220 for(G4int i = 0; i < 3; ++i)
221 {
222 mid[i] = fyIn[i] + 0.5 * fLastStepLength * (
223 hf1 * fdydxIn[i] + hf3 * ak3[i] +
224 hf4 * ak4[i] + hf5 * ak5[i] + hf6 * ak6[i] + hf7 * ak7[i]);
225 }
226
227 const G4ThreeVector begin = makeVector(fyIn, Value3D::Position);
228 const G4ThreeVector end = makeVector(fyOut, Value3D::Position);
229
230 return G4LineSection::Distline(mid, begin, end);
231}
232
233// The lower (4th) order interpolant given by Dormand and Prince:
234// J. R. Dormand and P. J. Prince, "Runge-Kutta triples"
235// Computers & Mathematics with Applications, vol. 12, no. 9,
236// pp. 1007-1017, 1986.
237//
239Interpolate4thOrder(G4double yOut[], G4double tau) const
240{
241 const G4int numberOfVariables = GetNumberOfVariables();
242
243 const G4double tau2 = tau * tau,
244 tau3 = tau * tau2,
245 tau4 = tau2 * tau2;
246
247 const G4double bf1 = 1.0 / 11282082432.0 * (
248 157015080.0 * tau4 - 13107642775.0 * tau3 + 34969693132.0 * tau2 -
249 32272833064.0 * tau + 11282082432.0);
250
251 const G4double bf3 = - 100.0 / 32700410799.0 * tau * (
252 15701508.0 * tau3 - 914128567.0 * tau2 + 2074956840.0 * tau -
253 1323431896.0);
254
255 const G4double bf4 = 25.0 / 5641041216.0 * tau * (
256 94209048.0 * tau3 - 1518414297.0 * tau2 + 2460397220.0 * tau -
257 889289856.0);
258
259 const G4double bf5 = - 2187.0 / 199316789632.0 * tau * (
260 52338360.0 * tau3 - 451824525.0 * tau2 + 687873124.0 * tau -
261 259006536.0);
262
263 const G4double bf6 = 11.0 / 2467955532.0 * tau * (
264 106151040.0 * tau3 - 661884105.0 * tau2 +
265 946554244.0 * tau - 361440756.0);
266
267 const G4double bf7 = 1.0 / 29380423.0 * tau * (1.0 - tau) * (
268 8293050.0 * tau2 - 82437520.0 * tau + 44764047.0);
269
270 for(G4int i = 0; i < numberOfVariables; ++i)
271 {
272 yOut[i] = fyIn[i] + fLastStepLength * tau * (
273 bf1 * fdydxIn[i] + bf3 * ak3[i] + bf4 * ak4[i] +
274 bf5 * ak5[i] + bf6 * ak6[i] + bf7 * ak7[i]);
275 }
276}
277
278// Following interpolant of order 5 was given by Baker,Dormand,Gilmore, Prince :
279// T. S. Baker, J. R. Dormand, J. P. Gilmore, and P. J. Prince,
280// "Continuous approximation with embedded Runge-Kutta methods"
281// Applied Numerical Mathematics, vol. 22, no. 1, pp. 51-62, 1996.
282//
283// Calculating the extra stages for the interpolant
284//
286{
287 // Coefficients for the additional stages
288 //
289 const G4double b81 = 6245.0 / 62208.0,
290 b82 = 0.0,
291 b83 = 8875.0 / 103032.0,
292 b84 = -125.0 / 1728.0,
293 b85 = 801.0 / 13568.0,
294 b86 = -13519.0 / 368064.0,
295 b87 = 11105.0 / 368064.0,
296
297 b91 = 632855.0 / 4478976.0,
298 b92 = 0.0,
299 b93 = 4146875.0 / 6491016.0,
300 b94 = 5490625.0 /14183424.0,
301 b95 = -15975.0 / 108544.0,
302 b96 = 8295925.0 / 220286304.0,
303 b97 = -1779595.0 / 62938944.0,
304 b98 = -805.0 / 4104.0;
305
306 const G4int numberOfVariables = GetNumberOfVariables();
307 State yTemp = {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.};
308
309 // Evaluate the extra stages
310 //
311 for(G4int i = 0; i < numberOfVariables; ++i)
312 {
313 yTemp[i] = fyIn[i] + fLastStepLength * (
314 b81 * fdydxIn[i] + b82 * ak2[i] + b83 * ak3[i] +
315 b84 * ak4[i] + b85 * ak5[i] + b86 * ak6[i] +
316 b87 * ak7[i]
317 );
318 }
319 RightHandSide(yTemp, ak8); // 8th Stage
320
321 for(G4int i = 0; i < numberOfVariables; ++i)
322 {
323 yTemp[i] = fyIn[i] + fLastStepLength * (
324 b91 * fdydxIn[i] + b92 * ak2[i] + b93 * ak3[i] +
325 b94 * ak4[i] + b95 * ak5[i] + b96 * ak6[i] +
326 b97 * ak7[i] + b98 * ak8[i]
327 );
328 }
329 RightHandSide(yTemp, ak9); // 9th Stage
330}
331
332// Calculating the interpolated result yOut with the coefficients
333//
335Interpolate5thOrder(G4double yOut[], G4double tau) const
336{
337 // Define the coefficients for the polynomials
338 //
339 G4double bi[10][5];
340
341 // COEFFICIENTS OF bi[1]
342 bi[1][0] = 1.0,
343 bi[1][1] = -38039.0 / 7040.0,
344 bi[1][2] = 125923.0 / 10560.0,
345 bi[1][3] = -19683.0 / 1760.0,
346 bi[1][4] = 3303.0 / 880.0,
347 // --------------------------------------------------------
348 //
349 // COEFFICIENTS OF bi[2]
350 bi[2][0] = 0.0,
351 bi[2][1] = 0.0,
352 bi[2][2] = 0.0,
353 bi[2][3] = 0.0,
354 bi[2][4] = 0.0,
355 // --------------------------------------------------------
356 //
357 // COEFFICIENTS OF bi[3]
358 bi[3][0] = 0.0,
359 bi[3][1] = -12500.0 / 4081.0,
360 bi[3][2] = 205000.0 / 12243.0,
361 bi[3][3] = -90000.0 / 4081.0,
362 bi[3][4] = 36000.0 / 4081.0,
363 // --------------------------------------------------------
364 //
365 // COEFFICIENTS OF bi[4]
366 bi[4][0] = 0.0,
367 bi[4][1] = -3125.0 / 704.0,
368 bi[4][2] = 25625.0 / 1056.0,
369 bi[4][3] = -5625.0 / 176.0,
370 bi[4][4] = 1125.0 / 88.0,
371 // --------------------------------------------------------
372 //
373 // COEFFICIENTS OF bi[5]
374 bi[5][0] = 0.0,
375 bi[5][1] = 164025.0 / 74624.0,
376 bi[5][2] = -448335.0 / 37312.0,
377 bi[5][3] = 295245.0 / 18656.0,
378 bi[5][4] = -59049.0 / 9328.0,
379 // --------------------------------------------------------
380 //
381 // COEFFICIENTS OF bi[6]
382 bi[6][0] = 0.0,
383 bi[6][1] = -25.0 / 28.0,
384 bi[6][2] = 205.0 / 42.0,
385 bi[6][3] = -45.0 / 7.0,
386 bi[6][4] = 18.0 / 7.0,
387 // --------------------------------------------------------
388 //
389 // COEFFICIENTS OF bi[7]
390 bi[7][0] = 0.0,
391 bi[7][1] = -2.0 / 11.0,
392 bi[7][2] = 73.0 / 55.0,
393 bi[7][3] = -171.0 / 55.0,
394 bi[7][4] = 108.0 / 55.0,
395 // --------------------------------------------------------
396 //
397 // COEFFICIENTS OF bi[8]
398 bi[8][0] = 0.0,
399 bi[8][1] = 189.0 / 22.0,
400 bi[8][2] = -1593.0 / 55.0,
401 bi[8][3] = 3537.0 / 110.0,
402 bi[8][4] = -648.0 / 55.0,
403 // --------------------------------------------------------
404 //
405 // COEFFICIENTS OF bi[9]
406 bi[9][0] = 0.0,
407 bi[9][1] = 351.0 / 110.0,
408 bi[9][2] = -999.0 / 55.0,
409 bi[9][3] = 2943.0 / 110.0,
410 bi[9][4] = -648.0 / 55.0;
411 // --------------------------------------------------------
412
413 // Calculating the polynomials
414
415 G4double b[10];
416 std::memset(b, 0.0, sizeof(b));
417
418 G4double tauPower = 1.0;
419 for(G4int j = 0; j <= 4; ++j)
420 {
421 for(G4int iStage = 1; iStage <= 9; ++iStage)
422 {
423 b[iStage] += bi[iStage][j] * tauPower;
424 }
425 tauPower *= tau;
426 }
427
428 const G4int numberOfVariables = GetNumberOfVariables();
429 const G4double stepLen = fLastStepLength * tau;
430 for(G4int i = 0; i < numberOfVariables; ++i)
431 {
432 yOut[i] = fyIn[i] + stepLen * (
433 b[1] * fdydxIn[i] + b[2] * ak2[i] + b[3] * ak3[i] +
434 b[4] * ak4[i] + b[5] * ak5[i] + b[6] * ak6[i] +
435 b[7] * ak7[i] + b[8] * ak8[i] + b[9] * ak9[i]
436 );
437 }
438}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
void Stepper(const G4double yInput[], const G4double dydx[], G4double hstep, G4double yOutput[], G4double yError[]) override
G4DormandPrince745(G4EquationOfMotion *equation, G4int numberOfVariables=6)
void Interpolate4thOrder(G4double yOut[], G4double tau) const
G4double DistChord() const override
void Interpolate5thOrder(G4double yOut[], G4double tau) const
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
G4int GetNumberOfVariables() const
void RightHandSide(const G4double y[], G4double dydx[]) const
G4ThreeVector makeVector(const ArrayType &array, Value3D value)
G4double[G4FieldTrack::ncompSVEC] State
void copy(G4double dst[], const G4double src[], std::size_t size=G4FieldTrack::ncompSVEC)