Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PhotonEvaporation.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 class file
30//
31// CERN, Geneva, Switzerland
32//
33// File name: G4PhotonEvaporation
34//
35// Author: Vladimir Ivantchenko
36//
37// Creation date: 22 October 2015
38//
39// -------------------------------------------------------------------
40//
41// This is gamma deexcitation model based on the nuclear levels data
42//
43
44#ifndef G4PHOTONEVAPORATION_HH
45#define G4PHOTONEVAPORATION_HH 1
46
47#include "globals.hh"
49#include "G4NuclearLevelData.hh"
50#include "G4LevelManager.hh"
51#include "G4Fragment.hh"
52
54
56
57public:
58
59 explicit G4PhotonEvaporation(G4GammaTransition* ptr=nullptr);
60
61 ~G4PhotonEvaporation() override;
62
63 void Initialise() override;
64
65 // one photon or e- emission
66 G4Fragment* EmittedFragment(G4Fragment* theNucleus) override;
67
68 // returns "false", emitted gamma and e- are added to the results
69 G4bool
70 BreakUpChain(G4FragmentVector* theResult, G4Fragment* theNucleus) override;
71
72 // emitted gamma, e-, and residual fragment are added to the results
73 G4FragmentVector* BreakItUp(const G4Fragment& theNucleus);
74
75 // compute emission probability for both continum and discrete cases
76 // must be called before any method above
77 G4double GetEmissionProbability(G4Fragment* theNucleus) override;
78
79 // methods for unit tests
81 G4double kinEnergy) override;
83 G4double kinEnergy) override;
84
86
88
90
91 void SetICM(G4bool) override;
92
93 void RDMForced (G4bool) override;
94
95 inline void SetVerboseLevel(G4int verbose);
96
97 inline G4int GetVacantShellNumber() const;
98
100 const G4PhotonEvaporation & operator =
101 (const G4PhotonEvaporation & right) = delete;
102
103private:
104
105 void InitialiseGRData();
106
107 G4Fragment* GenerateGamma(G4Fragment* nucleus);
108
109 inline void InitialiseLevelManager(G4int Z, G4int A);
110
111 G4NuclearLevelData* fNuclearLevelData;
112 const G4LevelManager* fLevelManager{nullptr};
113 G4GammaTransition* fTransition;
114
115 // fPolarization stores polarization tensor for consecutive
116 // decays of a nucleus
117 G4NuclearPolarization* fPolarization{nullptr};
118
119 G4int fVerbose;
120 G4int theZ{0};
121 G4int theA{0};
122 G4int fPoints{0};
123 G4int fCode{0};
124 G4int vShellNumber{-1};
125 G4int MAXDEPOINT{10};
126 std::size_t fIndex{0};
127
128 G4int fSecID; // Creator model ID for the secondaries created by this model
129
130 G4double fLevelEnergyMax{0.0};
131 G4double fExcEnergy{0.0};
132 G4double fProbability{0.0};
133 G4double fStep{0.0};
134 G4double fMaxLifeTime{DBL_MAX};
135
136 G4double fTolerance;
137
138 G4bool fICM{true};
139 G4bool fRDM{false};
140 G4bool fSampleTime{true};
141 G4bool fCorrelatedGamma{false};
142 G4bool isInitialised{false};
143
144 static const G4int MAXGRDATA{300};
145 static G4float GREnergy[MAXGRDATA];
146 static G4float GRWidth[MAXGRDATA];
147
148 G4double fCummProbability[10] = {0.0};
149};
150
152{
153 fVerbose = verbose;
154}
155
156inline void
157G4PhotonEvaporation::InitialiseLevelManager(G4int Z, G4int A)
158{
159 if(Z != theZ || A != theA) {
160 theZ = Z;
161 theA = A;
162 fIndex = 0;
163 fLevelManager = fNuclearLevelData->GetLevelManager(theZ, theA);
164 fLevelEnergyMax = fLevelManager ? fLevelManager->MaxLevelEnergy() : 0.0;
165 }
166}
167
169{
170 return vShellNumber;
171}
172
173#endif
std::vector< G4Fragment * > G4FragmentVector
Definition G4Fragment.hh:65
float G4float
Definition G4Types.hh:84
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4double MaxLevelEnergy() const
const G4LevelManager * GetLevelManager(G4int Z, G4int A)
void RDMForced(G4bool) override
G4double GetEmissionProbability(G4Fragment *theNucleus) override
G4double GetUpperLevelEnergy(G4int Z, G4int A)
void SetICM(G4bool) override
G4double ComputeProbability(G4Fragment *theNucleus, G4double kinEnergy) override
G4double ComputeInverseXSection(G4Fragment *theNucleus, G4double kinEnergy) override
G4double GetFinalLevelEnergy(G4int Z, G4int A, G4double energy)
G4bool BreakUpChain(G4FragmentVector *theResult, G4Fragment *theNucleus) override
void SetGammaTransition(G4GammaTransition *)
G4int GetVacantShellNumber() const
G4PhotonEvaporation(G4GammaTransition *ptr=nullptr)
G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)
G4Fragment * EmittedFragment(G4Fragment *theNucleus) override
void SetVerboseLevel(G4int verbose)
G4PhotonEvaporation(const G4PhotonEvaporation &right)=delete
#define DBL_MAX
Definition templates.hh:62