19static double sqrt_inv3 = 0.57735026918962576451;
22static double weights_3[(
n_3 + 1)/2] = { 8. / 9., 5. / 9. };
23static double xis_3[(
n_3 + 1)/2] = { 0., 0.77459666924148337704 };
26static double weights_4[(
n_4 + 1)/2] = { 0.65214515486254614263, 0.34785484513745385737 };
27static double xis_4[(
n_4 + 1)/2] = { 0.33998104358485626480, 0.86113631159405257522 };
30static double weights_5[(
n_5 + 1)/2] = { 0.568888888888889, 0.478628670499366, 0.236926885056189 };
31static double xis_5[(
n_5 + 1)/2] = { 0.0, 0.538469310105683, 0.906179845938664 };
34static double weights_10[(
n_10 + 1)/2] = { 0.295524224714752870, 0.269266719309996355, 0.219086362515982044, 0.149451349150580593, 0.066671344308688138 };
35static double xis_10[(
n_10 + 1)/2] = { 0.148874338981631211, 0.433395394129247191, 0.679409568299024406, 0.865063366688984511, 0.973906528517171720 };
38static double weights_20[(
n_20 + 1)/2] = {
39 0.152753387130725850698, 0.149172986472603746788, 0.142096109318382051329, 0.131688638449176626898, 0.118194531961518417312,
40 0.101930119817240435037, 0.083276741576704748725, 0.062672048334109063570, 0.040601429800386941331, 0.017614007139152118312 };
41static double xis_20[(
n_20 + 1)/2] = {
42 0.076526521133497333755, 0.227785851141645078080, 0.373706088715419560673, 0.510867001950827098004, 0.636053680726515025453,
43 0.746331906460150792614, 0.839116971822218823395, 0.912234428251325905868, 0.963971927277913791268, 0.993128599185094924786 };
46static double weights_40[(
n_40 + 1)/2] = {
47 0.077505947978424811264, 0.077039818164247965588, 0.076110361900626242372, 0.074723169057968264200, 0.072886582395804059061,
48 0.070611647391286779696, 0.067912045815233903826, 0.064804013456601038075, 0.061306242492928939167, 0.057439769099391551367,
49 0.053227846983936824355, 0.048695807635072232061, 0.043870908185673271992, 0.038782167974472017640, 0.033460195282547847393,
50 0.027937006980023401099, 0.022245849194166957262, 0.016421058381907888713, 0.010498284531152813615, 0.004521277098533191258 };
51static double xis_40[(
n_40 + 1)/2] = {
52 0.038772417506050821933, 0.116084070675255208483, 0.192697580701371099716, 0.268152185007253681141, 0.341994090825758473007,
53 0.413779204371605001525, 0.483075801686178712909, 0.549467125095128202076, 0.612553889667980237953, 0.671956684614179548379,
54 0.727318255189927103281, 0.778305651426519387695, 0.824612230833311663196, 0.865959503212259503821, 0.902098806968874296728,
55 0.932812808278676533361, 0.957916819213791655805, 0.977259949983774262663, 0.990726238699457006453, 0.998237709710559200350 };
59 {
n_5, weights_5, xis_5 }, {
n_10, weights_10, xis_10 }, {
n_20, weights_20, xis_20 }, {
n_40, weights_40, xis_40 } };
66 double x, mu, sum, *weights, *xis;
71 status = func( 0.5 * ( x1 + x2 ), integral, argList );
73 else if( degree < 4 ) {
74 x = 0.5 * ( -sqrt_inv3 * ( x2 - x1 ) + x1 + x2 );
75 if( ( status = func( x, integral, argList ) ) ==
nfu_Okay ) {
76 x = 0.5 * ( sqrt_inv3 * ( x2 - x1 ) + x1 + x2 );
77 status = func( x, &sum, argList );
81 for( i = 0; i <
nSets - 1; i++ ) {
82 if( GaussianQuadrature_degrees[i].n > ( degree + 1 ) / 2 )
break;
84 n = ( GaussianQuadrature_degrees[i].
n + 1 ) / 2;
85 weights = GaussianQuadrature_degrees[i].
weights;
86 xis = GaussianQuadrature_degrees[i].
xis;
87 for( i = 0; i < n; i++ ) {
89 x = 0.5 * ( x1 * ( 1 - mu ) + x2 * ( mu + 1 ) );
90 if( ( status = func( x, &sum, argList ) ) !=
nfu_Okay )
break;
91 *integral += sum * weights[i];
92 if( mu == 0 )
continue;
94 if( ( status = func( x, &sum, argList ) ) !=
nfu_Okay )
break;
95 *integral += sum * weights[i];
98 *integral *= 0.5 * ( x2 - x1 );
102#if defined __cplusplus
nfu_status nf_Legendre_GaussianQuadrature(int degree, double x1, double x2, nf_Legendre_GaussianQuadrature_callback func, void *argList, double *integral)
nfu_status(* nf_Legendre_GaussianQuadrature_callback)(double x, double *y, void *argList)
enum nfu_status_e nfu_status