Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4BraggIonModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// -------------------------------------------------------------------
27//
28// GEANT4 Class file
29//
30//
31// File name: G4BraggIonModel
32//
33// Author: Vladimir Ivanchenko
34//
35// Creation date: 13.10.2004
36//
37// Modifications:
38// 11-05-05 Major optimisation of internal interfaces (V.Ivantchenko)
39// 29-11-05 Do not use G4Alpha class (V.Ivantchenko)
40// 15-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
41// 25-04-06 Add stopping data from ASTAR (V.Ivanchenko)
42// 23-10-06 Reduce lowestKinEnergy to 0.25 keV (V.Ivanchenko)
43// 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio,
44// CorrectionsAlongStep needed for ions(V.Ivanchenko)
45//
46
47// Class Description:
48//
49// Implementation of energy loss and delta-electron production by
50// slow charged heavy particles
51
52// -------------------------------------------------------------------
53//
54
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57
58#include "G4BraggIonModel.hh"
60#include "G4SystemOfUnits.hh"
61#include "Randomize.hh"
62#include "G4Electron.hh"
64#include "G4EmCorrections.hh"
65#include "G4DeltaAngle.hh"
67#include "G4ASTARStopping.hh"
68#include "G4PSTARStopping.hh"
69#include "G4NistManager.hh"
70#include "G4Log.hh"
71#include "G4Exp.hh"
72#include "G4AutoLock.hh"
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
75
76G4ASTARStopping* G4BraggIonModel::fASTAR = nullptr;
77
78namespace
79{
80 G4Mutex alphaMutex = G4MUTEX_INITIALIZER;
81}
82
84 const G4String& nam)
85 : G4BraggModel(p, nam)
86{
87 HeMass = 3.727417*CLHEP::GeV;
88 massFactor = 1000.*CLHEP::amu_c2/HeMass;
89}
90
91//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
92
94{
95 if(isFirstAlpha) {
96 delete fASTAR;
97 fASTAR = nullptr;
98 }
99}
100
101//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
102
104 const G4DataVector& ref)
105{
107 const G4String& pname = particle->GetParticleName();
108 if(pname == "alpha") { isAlpha = true; }
109 if(isAlpha && fASTAR == nullptr) {
110 G4AutoLock l(&alphaMutex);
111 if(fASTAR == nullptr) {
112 isFirstAlpha = true;
113 fASTAR = new G4ASTARStopping();
114 }
115 l.unlock();
116 }
117 if(isFirstAlpha) {
118 fASTAR->Initialise();
119 }
120}
121
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124
126 const G4Material* mat,
127 G4double kinEnergy)
128{
129 // this method is called only for ions, so no check if it is an ion
130 if(isAlpha) { return 1.0; }
131 return G4BraggModel::GetChargeSquareRatio(p, mat, kinEnergy);
132}
133
134//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
135
137 const G4ParticleDefinition* p,
138 G4double kinEnergy,
140 G4double cutEnergy,
141 G4double maxEnergy)
142{
143 G4double sigma =
144 Z*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy);
145 if(isAlpha) {
146 sigma *= (HeEffChargeSquare(Z, kinEnergy/CLHEP::MeV)/chargeSquare);
147 }
148 return sigma;
149}
150
151//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
152
154 const G4Material* material,
155 const G4ParticleDefinition* p,
156 G4double kinEnergy,
157 G4double cutEnergy,
158 G4double maxEnergy)
159{
160 G4double sigma = material->GetElectronDensity()*
161 ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy);
162 if(isAlpha) {
163 const G4double zeff = material->GetTotNbOfElectPerVolume()/
164 material->GetTotNbOfAtomsPerVolume();
165 sigma *= (HeEffChargeSquare(zeff, kinEnergy/CLHEP::MeV)/chargeSquare);
166 }
167 return sigma;
168}
169
170//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171
173 const G4ParticleDefinition* p,
174 G4double kineticEnergy,
175 G4double cut)
176{
177 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
178 const G4double tlim = lowestKinEnergy*massRate;
179 const G4double tmin = std::max(std::min(cut, tmax), tlim);
180 G4double dedx = 0.0;
181
182 if(kineticEnergy < tlim) {
183 dedx = HeDEDX(material, tlim)*std::sqrt(kineticEnergy/tlim);
184 } else {
185 dedx = HeDEDX(material, kineticEnergy);
186
187 if (tmin < tmax) {
188 const G4double tau = kineticEnergy/mass;
189 const G4double x = tmin/tmax;
190
191 G4double del =
192 (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) *
193 CLHEP::twopi_mc2_rcl2*material->GetElectronDensity();
194 if(isAlpha) {
195 const G4double zeff = material->GetTotNbOfElectPerVolume()/
196 material->GetTotNbOfAtomsPerVolume();
197 heChargeSquare = HeEffChargeSquare(zeff, kineticEnergy/CLHEP::MeV);
198 del *= heChargeSquare;
199 }
200 dedx += del;
201 }
202 }
203 dedx = std::max(dedx, 0.0);
204 /*
205 G4cout << "BraggIon: " << material->GetName()
206 << " E(MeV)=" << kineticEnergy/MeV
207 << " Tmin(MeV)=" << tmin << " dedx(MeV*cm^2/g)="
208 << dedx*gram/(MeV*cm2*material->GetDensity())
209 << " q2=" << chargeSquare << G4endl;
210 */
211 return dedx;
212}
213
214//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
215
217 const G4DynamicParticle* dp,
218 const G4double&,
219 G4double& eloss)
220{
221 // no correction for alpha
222 if(isAlpha) { return; }
223
224 // no correction at a small step at the last step
225 const G4double preKinEnergy = dp->GetKineticEnergy();
226 if(eloss >= preKinEnergy || eloss < preKinEnergy*0.05) { return; }
227
228 // corrections only for ions
229 const G4ParticleDefinition* p = dp->GetDefinition();
230 if(p != particle) { SetParticle(p); }
231
232 // effective energy and charge at a step
233 const G4Material* mat = couple->GetMaterial();
234 const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5);
235 const G4double q20 = corr->EffectiveChargeSquareRatio(p, mat, preKinEnergy);
236 const G4double q2 = corr->EffectiveChargeSquareRatio(p, mat, e);
237 const G4double qfactor = q2/q20;
238 /*
239 G4cout << "G4BraggIonModel::CorrectionsAlongStep: Epre(MeV)="
240 << preKinEnergy << " Eeff(MeV)=" << e
241 << " eloss=" << eloss << " elossnew=" << eloss*qfactor
242 << " qfactor=" << qfactor << " Qpre=" << q20
243 << p->GetParticleName() <<G4endl;
244 */
245 eloss *= qfactor;
246}
247
248//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
249
250G4int G4BraggIonModel::HasMaterialForHe(const G4Material* mat) const
251{
252 const G4String& chFormula = mat->GetChemicalFormula();
253 if(chFormula.empty()) { return -1; }
254
255 // ICRU Report N49, 1993. Ziegler model for He.
256
257 static const G4int numberOfMolecula = 11;
258 static const G4String molName[numberOfMolecula] = {
259 "CaF_2", "Cellulose_Nitrate", "LiF", "Policarbonate",
260 "(C_2H_4)_N-Polyethylene", "(C_2H_4)_N-Polymethly_Methacralate",
261 "Polysterene", "SiO_2", "NaI", "H_2O",
262 "Graphite" };
263
264 // Search for the material in the table
265 for (G4int i=0; i<numberOfMolecula; ++i) {
266 if (chFormula == molName[i]) {
267 return i;
268 }
269 }
270 return -1;
271}
272
273//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
274
275G4double G4BraggIonModel::HeStoppingPower(const G4double kineticEnergy) const
276{
277 G4double ionloss = 0.0;
278 if (iMolecula >= 0) {
279
280 // The data and the fit from:
281 // ICRU Report N49, 1993. Ziegler's model for alpha
282 // He energy in internal units of parametrisation formula (MeV)
283 // Input scaled energy of a proton or GenericIon
284 G4double T = kineticEnergy/(massRate*CLHEP::MeV);
285
286 static const G4float a[11][5] = {
287 {9.43672f, 0.54398f, 84.341f, 1.3705f, 57.422f},
288 {67.1503f, 0.41409f, 404.512f, 148.97f, 20.99f},
289 {5.11203f, 0.453f, 36.718f, 50.6f, 28.058f},
290 {61.793f, 0.48445f, 361.537f, 57.889f, 50.674f},
291 {7.83464f, 0.49804f, 160.452f, 3.192f, 0.71922f},
292 {19.729f, 0.52153f, 162.341f, 58.35f, 25.668f},
293 {26.4648f, 0.50112f, 188.913f, 30.079f, 16.509f},
294 {7.8655f, 0.5205f, 63.96f, 51.32f, 67.775f},
295 {8.8965f, 0.5148f, 339.36f, 1.7205f, 0.70423f},
296 {2.959f, 0.53255f, 34.247f, 60.655f, 15.153f},
297 {3.80133f, 0.41590f, 12.9966f, 117.83f, 242.28f} };
298
299 static const G4double atomicWeight[11] = {
300 101.96128f, 44.0098f, 16.0426f, 28.0536f, 42.0804f,
301 104.1512f, 44.665f, 60.0843f, 18.0152f, 18.0152f, 12.0f};
302
303 const G4int i = iMolecula;
304
305 G4double slow = (G4double)(a[i][0]);
306
307 G4double x1 = (G4double)(a[i][1]);
308 G4double x2 = (G4double)(a[i][2]);
309 G4double x3 = (G4double)(a[i][3]);
310 G4double x4 = (G4double)(a[i][4]);
311
312 // Free electron gas model
313 if ( T < 0.001 ) {
314 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 ) *x2*1000.0;
315 ionloss = slow*shigh / (slow + shigh) ;
316 ionloss *= std::sqrt(T*1000.0) ;
317
318 // Main parametrisation
319 } else {
320 slow *= G4Exp(G4Log(T*1000.0)*x1) ;
321 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T ;
322 ionloss = slow*shigh / (slow + shigh) ;
323 /*
324 G4cout << "## " << i << ". T= " << T << " slow= " << slow
325 << " a0= " << a[i][0] << " a1= " << a[i][1]
326 << " shigh= " << shigh
327 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T*MeV)
328 << G4endl;
329 */
330 }
331 ionloss = std::max(ionloss, 0.0) * atomicWeight[iMolecula];
332 }
333 return ionloss;
334}
335
336//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
337
338G4double G4BraggIonModel::HeElectronicStoppingPower(const G4int z,
339 const G4double kineticEnergy) const
340{
341 G4double ionloss ;
342 G4int i = std::min(z-1, 91); // index of atom
343 //G4cout << "ElectronicStoppingPower z=" << z << " i=" << i
344 // << " E=" << kineticEnergy << G4endl;
345 // The data and the fit from:
346 // ICRU Report 49, 1993. Ziegler's type of parametrisations.
347 // Proton kinetic energy for parametrisation (keV/amu)
348 // He energy in internal units of parametrisation formula (MeV)
349 //G4double T = kineticEnergy*rateMassHe2p/CLHEP::MeV;
350 G4double T = kineticEnergy/CLHEP::MeV;
351
352 static const G4float a[92][5] = {
353 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 4.3515f
354 },{ 0.58f, 0.59f, 6.3f, 130.0f, 44.07f
355 },{ 1.42f, 0.49f, 12.25f, 32.0f, 9.161f
356 },{ 2.206f, 0.51f, 15.32f, 0.25f, 8.995f //Be Ziegler77
357 // },{ 2.1895f, 0.47183,7.2362f, 134.30f, 197.96f //Be from ICRU
358 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 9.0f
359 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 188.97f
360 // },{ 1.9259f, 0.5550f, 27.15125f, 26.0665f, 6.2768f //too many digits
361 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 6.2768f
362 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 1.0382f
363 },{ 1.533f, 0.531f, 40.44f, 18.41f, 2.718f
364 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 5.092f
365 // Z= 11-20
366 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 92.93f
367 },{ 4.3f, 0.47f, 34.3f, 3.3f, 12.74f
368 },{ 2.5f, 0.625f, 45.7f, 0.1f, 4.359f
369 },{ 2.1f, 0.65f, 49.34f, 1.788f, 4.133f
370 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 3.845f
371 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 3.211f
372 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 2.156f
373 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 2.066f
374 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 1.875f
375 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 5.036f
376 // Z= 21-30
377 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 6.665f
378 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 5.948f
379 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 2.71f
380 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 2.779f
381 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 3.101f
382 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 3.211f
383 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 5.441f
384 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 4.952f
385 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 6.385f
386 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 7.502f
387 // Z= 31-40
388 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 8.514f
389 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 7.993f
390 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 2.331f
391 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 1.667f
392 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 2.851f
393 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 1.016f
394 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 4.371f
395 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 2.454f
396 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 1.423f
397 },{ 10.99f, 0.41f, 163.9f, 7.1f, 1.052f
398 // Z= 41-50
399 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 1.102f
400 },{ 9.276f, 0.418f, 157.1f, 8.038f, 1.29f
401 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 5.792f
402 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 5.754f
403 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 8.689f
404 },{ 5.8f, 0.49f, 147.2f, 6.903f, 1.289f
405 },{ 5.6f, 0.49f, 130.0f, 10.0f, 2.844f
406 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 3.119f
407 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 6.026f
408 },{ 5.4f, 0.53f, 103.1f, 3.931f, 7.767f
409 // Z= 51-60
410 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 2.723f
411 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 3.411f
412 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 1.51f
413 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 0.9126f
414 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 2.597f
415 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 3.726f
416 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 0.9121f
417 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 2.529f
418 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 2.444f
419 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 2.328f
420 // Z= 61-70
421 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 2.258f
422 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 1.997f
423 },{ 14.22f, 0.363f, 228.4f, 7.024f, 1.016f
424 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 0.9244f
425 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 1.258f
426 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 1.055f
427 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 1.221f
428 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 0.849f
429 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 1.604f
430 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 1.459f
431 // Z= 71-80
432 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 1.66f
433 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 1.589f
434 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 0.8619f
435 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 0.8228f
436 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 1.263f
437 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 1.191f
438 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 1.305f
439 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 0.8962f
440 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f //Au Z77
441 // },{ 3.223f, 0.5883f, 232.7f, 2.954f, 1.05 //Au ICRU
442 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f
443 // Z= 81-90
444 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 1.386f
445 },{ 6.18f, 0.52f, 170.0f, 4.0f, 3.224f
446 },{ 9.0f, 0.47f, 198.0f, 3.8f, 2.032f
447 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 1.399f
448 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 1.296f
449 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 0.5507f
450 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 0.9899f
451 },{ 7.962f, 0.519f, 235.7f, 4.347f, 1.313f
452 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 1.379f
453 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 1.432f
454 // Z= 91-92
455 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 1.358f
456 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 1.25f}
457 };
458
459 G4double slow = (G4double)(a[i][0]);
460
461 G4double x1 = (G4double)(a[i][1]);
462 G4double x2 = (G4double)(a[i][2]);
463 G4double x3 = (G4double)(a[i][3]);
464 G4double x4 = (G4double)(a[i][4]);
465
466 // Free electron gas model
467 if ( T < 0.001 ) {
468 G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 )* x2*1000.0;
469 ionloss = slow*shigh*std::sqrt(T*1000.0) / (slow + shigh) ;
470
471 // Main parametrisation
472 } else {
473 slow *= G4Exp(G4Log(T*1000.0)*x1);
474 G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T;
475 ionloss = slow*shigh / (slow + shigh) ;
476 /*
477 G4cout << "## " << i << ". T= " << T << " slow= " << slow
478 << " a0= " << a[i][0] << " a1= " << a[i][1]
479 << " shigh= " << shigh
480 << " dedx= " << ionloss << " q^2= " << HeEffChargeSquare(z, T)
481 << G4endl;
482 */
483 }
484 ionloss = std::max(ionloss, 0.0);
485 return ionloss;
486}
487
488//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
489
490G4double G4BraggIonModel::HeDEDX(const G4Material* material,
491 const G4double aEnergy)
492{
493 // aEnergy is energy of alpha
494 G4double eloss = 0.0;
495 // check DB
496 if(material != currentMaterial) {
497 currentMaterial = material;
498 baseMaterial = material->GetBaseMaterial()
499 ? material->GetBaseMaterial() : material;
500 iPSTAR = -1;
501 iASTAR = -1;
502 iMolecula = -1;
503 iICRU90 = (nullptr != fICRU90) ? fICRU90->GetIndex(baseMaterial) : -1;
504
505 if(iICRU90 < 0) {
506 if(isAlpha) {
507 iASTAR = fASTAR->GetIndex(baseMaterial);
508 if(iASTAR < 0) { iMolecula = HasMaterialForHe(baseMaterial); }
509 } else {
511 }
512 }
513 /*
514 G4cout << "%%% " <<material->GetName() << " iMolecula= "
515 << iMolecula << " iASTAR= " << iASTAR
516 << " iICRU90= " << iICRU90<< G4endl;
517 */
518 }
519 // ICRU90
520 if(iICRU90 >= 0) {
521 eloss = (isAlpha)
524 if(eloss > 0.0) { return eloss*material->GetDensity(); }
525 }
526 // PSTAR parameterisation
527 if( iPSTAR >= 0 ) {
528 return fPSTAR->GetElectronicDEDX(iPSTAR, aEnergy)
529 *material->GetDensity();
530 }
531 // ASTAR
532 if( iASTAR >= 0 ) {
533 eloss = fASTAR->GetElectronicDEDX(iASTAR, aEnergy);
534 /*
535 G4cout << "ASTAR: E=" << aEnergy
536 << " dedx=" << eloss*material->GetDensity()
537 << " " << particle->GetParticleName() << G4endl;
538 */
539 if(eloss > 0.0) { return eloss*material->GetDensity(); }
540 }
541
542 const std::size_t numberOfElements = material->GetNumberOfElements();
543 const G4ElementVector* theElmVector = material->GetElementVector();
544 const G4double* theAtomicNumDensityVector =
545 material->GetAtomicNumDensityVector();
546
547 // molecular data use proton stopping power table
548 // element data from ICRU49 include data for alpha
549 if(iMolecula >= 0) {
550 const G4double zeff = material->GetTotNbOfElectPerVolume()/
551 material->GetTotNbOfAtomsPerVolume();
552 heChargeSquare = HeEffChargeSquare(zeff, aEnergy/CLHEP::MeV);
553 eloss = HeStoppingPower(aEnergy)*heChargeSquare*material->GetDensity()/amu;
554
555 // pure material
556 } else if(1 == numberOfElements) {
557
558 const G4Element* element = (*theElmVector)[0];
559 eloss = HeElectronicStoppingPower(element->GetZasInt(), aEnergy)
560 * (material->GetTotNbOfAtomsPerVolume());
561
562 // Brugg's rule calculation
563 } else {
564 // loop for the elements in the material
565 for (std::size_t i=0; i<numberOfElements; ++i) {
566 const G4Element* element = (*theElmVector)[i];
567 eloss += HeElectronicStoppingPower(element->GetZasInt(), aEnergy)
568 * theAtomicNumDensityVector[i];
569 }
570 }
571 return eloss*theZieglerFactor;
572}
573
574//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
575
577G4BraggIonModel::HeEffChargeSquare(const G4double z,
578 const G4double kinEnergyHeInMeV) const
579{
580 // The aproximation of He effective charge from:
581 // J.F.Ziegler, J.P. Biersack, U. Littmark
582 // The Stopping and Range of Ions in Matter,
583 // Vol.1, Pergamon Press, 1985
584
585 static const G4double c[6] = {0.2865, 0.1266, -0.001429,
586 0.02402,-0.01135, 0.001475};
587
588 G4double e = std::max(0.0, G4Log(kinEnergyHeInMeV*massFactor));
589 G4double x = c[0] ;
590 G4double y = 1.0 ;
591 for (G4int i=1; i<6; ++i) {
592 y *= e;
593 x += y * c[i];
594 }
595
596 G4double w = 7.6 - e ;
597 w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w ) ;
598 w = 4.0 * (1.0 - G4Exp(-x)) * w * w ;
599
600 return w;
601}
602
603//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
604
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
#define G4MUTEX_INITIALIZER
std::mutex G4Mutex
float G4float
Definition G4Types.hh:84
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4int GetIndex(const G4Material *) const
G4double GetElectronicDEDX(G4int idx, G4double energy) const
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
G4double GetChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy) override
~G4BraggIonModel() override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4BraggIonModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="BraggIon")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss) override
const G4Material * baseMaterial
G4double massRate
G4double lowestKinEnergy
G4double theZieglerFactor
void SetParticle(const G4ParticleDefinition *p)
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
G4EmCorrections * corr
G4double GetChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy) override
G4double chargeSquare
const G4ParticleDefinition * particle
const G4Material * currentMaterial
G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
static G4PSTARStopping * fPSTAR
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
static G4ICRU90StoppingData * fICRU90
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4int GetZasInt() const
Definition G4Element.hh:120
G4double EffectiveChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, const G4double kineticEnergy)
G4double GetElectronicDEDXforProton(const G4Material *, G4double kinEnergy) const
G4int GetIndex(const G4Material *) const
G4double GetElectronicDEDXforAlpha(const G4Material *, G4double scaledKinEnergy) const
const G4Material * GetMaterial() const
G4double GetDensity() const
const G4String & GetChemicalFormula() const
const G4ElementVector * GetElementVector() const
const G4Material * GetBaseMaterial() const
G4double GetTotNbOfAtomsPerVolume() const
G4double GetTotNbOfElectPerVolume() const
const G4double * GetAtomicNumDensityVector() const
G4double GetElectronDensity() const
std::size_t GetNumberOfElements() const
G4int GetIndex(const G4Material *) const
G4double GetElectronicDEDX(G4int idx, G4double energy) const
const G4String & GetParticleName() const