Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsPionMinusInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29//
30// G4 Physics class: G4ChipsPionMinusInelasticXS for gamma+A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33//
34// -------------------------------------------------------------------------------------
35// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
36// pion interactions. Original author: M. Kossov
37// -------------------------------------------------------------------------------------
38//
39
42#include "G4SystemOfUnits.hh"
43#include "G4DynamicParticle.hh"
45#include "G4PionMinus.hh"
46
47#include "G4Log.hh"
48#include "G4Exp.hh"
49
50// factory
52//
54
56{
57 // Initialization of the
58 lastLEN=0; // Pointer to lastArray of LowEn CS
59 lastHEN=0; // Pointer to lastArray of HighEn CS
60 lastN=0; // The last N of calculated nucleus
61 lastZ=0; // The last Z of calculated nucleus
62 lastP=0.; // Last used cross section Momentum
63 lastTH=0.; // Last threshold momentum
64 lastCS=0.; // Last value of the Cross Section
65 lastI=0; // The last position in the DAMDB
66 LEN = new std::vector<G4double*>;
67 HEN = new std::vector<G4double*>;
68}
69
71{
72 std::size_t lens=LEN->size();
73 for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
74 delete LEN;
75 std::size_t hens=HEN->size();
76 for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
77 delete HEN;
78}
79
80void
82{
83 outFile << "G4ChipsPionMinusInelasticXS provides the inelastic cross\n"
84 << "section for pion- nucleus scattering as a function of incident\n"
85 << "momentum. The cross section is calculated using M. Kossov's\n"
86 << "CHIPS parameterization of cross section data.\n";
87}
88
95
96// The main member function giving the collision cross section (P is in IU, CS is in mb)
97// Make pMom in independent units ! (Now it is MeV)
99 const G4Isotope*,
100 const G4Element*,
101 const G4Material*)
102{
103 G4double pMom=Pt->GetTotalMomentum();
104 G4int tgN = A - tgZ;
105
106 return GetChipsCrossSection(pMom, tgZ, tgN, -211);
107}
108
110{
111
112 G4bool in=false; // By default the isotope must be found in the AMDB
113 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
114 {
115 in = false; // By default the isotope haven't be found in AMDB
116 lastP = 0.; // New momentum history (nothing to compare with)
117 lastN = tgN; // The last N of the calculated nucleus
118 lastZ = tgZ; // The last Z of the calculated nucleus
119 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
120 j = 0; // A#0f records found in DB for this projectile
121 if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
122 {
123 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
124 {
125 lastI=i; // Remember the index for future fast/last use
126 lastTH =colTH[i]; // The last THreshold (A-dependent)
127 if(pMom<=lastTH)
128 {
129 return 0.; // Energy is below the Threshold value
130 }
131 lastP =colP [i]; // Last Momentum (A-dependent)
132 lastCS =colCS[i]; // Last CrossSect (A-dependent)
133 in = true; // This is the case when the isotop is found in DB
134 // Momentum pMom is in IU ! @@ Units
135 lastCS=CalculateCrossSection(-1,j,-211,lastZ,lastN,pMom); // read & update
136 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
137 {
138 lastCS=0.;
139 lastTH=pMom;
140 }
141 break; // Go out of the LOOP
142 }
143 j++; // Increment a#0f records found in DB
144 }
145 if(!in) // This isotope has not been calculated previously
146 {
147 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
148 lastCS=CalculateCrossSection(0,j,-211,lastZ,lastN,pMom); //calculate & create
149 //if(lastCS>0.) // It means that the AMBD was initialized
150 //{
151
152 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
153 colN.push_back(tgN);
154 colZ.push_back(tgZ);
155 colP.push_back(pMom);
156 colTH.push_back(lastTH);
157 colCS.push_back(lastCS);
158 //} // M.K. Presence of H1 with high threshold breaks the syncronization
159 return lastCS*millibarn;
160 } // End of creation of the new set of parameters
161 else
162 {
163 colP[lastI]=pMom;
164 colCS[lastI]=lastCS;
165 }
166 } // End of parameters udate
167 else if(pMom<=lastTH)
168 {
169 return 0.; // Momentum is below the Threshold Value -> CS=0
170 }
171 else // It is the last used -> use the current tables
172 {
173 lastCS=CalculateCrossSection(1,j,-211,lastZ,lastN,pMom); // Only read and UpdateDB
174 lastP=pMom;
175 }
176 return lastCS*millibarn;
177}
178
179// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
180G4double G4ChipsPionMinusInelasticXS::CalculateCrossSection(G4int F, G4int I,
181 G4int, G4int targZ, G4int targN, G4double Momentum)
182{
183 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
184 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
185 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
186 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
187 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
188 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
189 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
190 static const G4int nH=224; // A#of HEN points in lnE
191 static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
192 static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
193 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
194 static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
195 G4double sigma=0.;
196 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
197 //G4double A=targN+targZ; // A of the target
198 if(F<=0) // This isotope was not the last used isotop
199 {
200 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
201 {
202 G4int sync=(G4int)LEN->size();
203 if(sync<=I) G4cerr<<"*!*G4ChipsPiMinusNuclCS::CalcCrosSect:Sync="<<sync<<"<="<<I<<G4endl;
204 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
205 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
206 }
207 else // This isotope wasn't calculated before => CREATE
208 {
209 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
210 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
211 // --- Instead of making a separate function ---
212 G4double P=THmiG; // Table threshold in GeV/c
213 for(G4int k=0; k<nL; k++)
214 {
215 lastLEN[k] = CrossSectionLin(targZ, targN, P);
216 P+=dPG;
217 }
218 G4double lP=milPG;
219 for(G4int n=0; n<nH; n++)
220 {
221 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
222 lP+=dlP;
223 }
224 // --- End of possible separate function
225 // *** The synchronization check ***
226 G4int sync=(G4int)LEN->size();
227 if(sync!=I)
228 {
229 G4cerr<<"***G4ChipsPiMinusNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
230 <<", N="<<targN<<", F="<<F<<G4endl;
231 //G4Exception("G4PiMinusNuclearCS::CalculateCS:","39",FatalException,"DBoverflow");
232 }
233 LEN->push_back(lastLEN); // remember the Low Energy Table
234 HEN->push_back(lastHEN); // remember the High Energy Table
235 } // End of creation of the new set of parameters
236 } // End of parameters udate
237 // =---------------------= NOW the Magic Formula =---------------------------=
238 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
239 else if (Momentum<Pmin) // High Energy region
240 {
241 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
242 }
243 else if (Momentum<Pmax) // High Energy region
244 {
245 G4double lP=G4Log(Momentum);
246 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
247 }
248 else // UHE region (calculation, not frequent)
249 {
250 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
251 sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
252 }
253 if(sigma<0.) return 0.;
254 return sigma;
255}
256
257// Calculation formula for piMinus-nuclear inelastic cross-section (mb) (P in GeV/c)
258G4double G4ChipsPionMinusInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
259{
260 G4double lP=G4Log(P);
261 return CrossSectionFormula(tZ, tN, P, lP);
262}
263
264// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
265G4double G4ChipsPionMinusInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
266{
267 G4double P=G4Exp(lP);
268 return CrossSectionFormula(tZ, tN, P, lP);
269}
270// Calculation formula for piMinus-nuclear inelastic cross-section (mb) log(P in GeV/c)
271G4double G4ChipsPionMinusInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
272 G4double P, G4double lP)
273{
274 G4double sigma=0.;
275 if(tZ==1 && !tN) // PiMin-Proton interaction from G4QuasiElRatios
276 {
277 G4double lr=lP+1.27; // From G4QuasiFreeRatios.cc Uzhi
278 G4double LE=1.53/(lr*lr+.0676); // From G4QuasiFreeRatios.cc Uzhi
279 G4double ld=lP-3.5;
280 G4double ld2=ld*ld;
281 G4double p2=P*P;
282 G4double p4=p2*p2;
283 G4double sp=std::sqrt(P);
284 G4double lm=lP+.36;
285 G4double md=lm*lm+.04;
286 G4double lh=lP-.017;
287 G4double hd=lh*lh+.0025;
288 G4double El=(.0557*ld2+2.4+7./sp)/(1.+.7/p4);
289 G4double To=(.3*ld2+22.3+12./sp)/(1.+.4/p4);
290 sigma=(To-El)+.4/md+.01/hd;
291 sigma+=LE*2; // Uzhi
292 }
293 else if(tZ==1 && tN==1) // pimp_tot
294 {
295 G4double p2=P*P;
296 G4double d=lP-2.7;
297 G4double f=lP+1.25;
298 G4double gg=lP-.017;
299 sigma=(.55*d*d+38.+23./std::sqrt(P))/(1.+.3/p2/p2)+18./(f*f+.1089)+.02/(gg*gg+.0025);
300 }
301 else if(tZ<97 && tN<152) // General solution
302 {
303 G4double d=lP-4.2;
304 G4double p2=P*P;
305 G4double p4=p2*p2;
306 G4double a=tN+tZ; // A of the target
307 G4double al=G4Log(a);
308 G4double sa=std::sqrt(a);
309 G4double ssa=std::sqrt(sa);
310 G4double a2=a*a;
311 G4double c=41.*G4Exp(al*.68)*(1.+44./a2)/(1.+8./a)/(1.+200./a2/a2);
312 G4double f=120*sa/(1.+24./a/ssa);
313 G4double gg=-1.32-al*.043;
314 G4double u=lP-gg;
315 G4double h=al*(.388-.046*al);
316 sigma=(c+d*d)/(1.+.17/p4)+f/(u*u+h*h);
317 }
318 else
319 {
320 G4cerr<<"-Warning-G4ChipsPiMinusNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
321 sigma=0.;
322 }
323 if(sigma<0.) return 0.;
324 return sigma;
325}
326
327G4double G4ChipsPionMinusInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
328{
329 if(DX<=0. || N<2)
330 {
331 G4cerr<<"***G4ChipsPionMinusInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
332 return Y[0];
333 }
334
335 G4int N2=N-2;
336 G4double d=(X-X0)/DX;
337 G4int jj=static_cast<int>(d);
338 if (jj<0) jj=0;
339 else if(jj>N2) jj=N2;
340 d-=jj; // excess
341 G4double yi=Y[jj];
342 G4double sigma=yi+(Y[jj+1]-yi)*d;
343
344 return sigma;
345}
@ LE
Definition Evaluator.cc:68
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double Y(G4double density)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition G4ios.hh:67
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4double GetTotalMomentum() const
#define N
Definition crc32.c:57