99 return p->
GetPDGMass()*(std::sqrt(1. + 0.5*cut/CLHEP::electron_mass_c2) - 1.0);
118 theBaseParticle =
nullptr;
119 }
else if(
nullptr != bpart) {
120 theBaseParticle = bpart;
121 }
else if(part == ion || pdg == 1000020040) {
122 theBaseParticle =
nullptr;
124 theBaseParticle = ion;
129 eth = 2*CLHEP::MeV*part->
GetPDGMass()/CLHEP::proton_mass_c2;
157 emax = std::max(emax, eth*10);
161 isInitialised =
true;
169 out <<
" Ion ionisation";
static G4Electron * Electron()
static G4EmParameters * Instance()
G4double MinKinEnergy() const
G4double MaxKinEnergy() const
static G4VEmFluctuationModel * ModelOfFluctuations(G4bool isIon=false)
static G4GenericIon * GenericIon()
G4double GetPDGMass() const
G4int GetPDGEncoding() const
void SetHighEnergyLimit(G4double)
G4double HighEnergyLimit() const
void SetLowEnergyLimit(G4double)
void AddEmModel(G4int, G4VEmModel *, G4VEmFluctuationModel *fluc=nullptr, const G4Region *region=nullptr)
void SetFluctModel(G4VEmFluctuationModel *)
void ProcessDescription(std::ostream &outFile) const override
G4VEmModel * EmModel(std::size_t index=0) const
void SetEmModel(G4VEmModel *, G4int index=0)
void SetBaseParticle(const G4ParticleDefinition *p)
G4VEmFluctuationModel * FluctModel() const
void SetLinearLossLimit(G4double val)
void SetSecondaryParticle(const G4ParticleDefinition *p)
void SetProcessSubType(G4int)
void InitialiseEnergyLossProcess(const G4ParticleDefinition *, const G4ParticleDefinition *) override
G4double MinPrimaryEnergy(const G4ParticleDefinition *p, const G4Material *, G4double cut) final
G4ionIonisation(const G4String &name="ionIoni")
G4bool IsApplicable(const G4ParticleDefinition &p) final
void ProcessDescription(std::ostream &) const override