Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DeexPrecoParameters.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 15.03.2016 V.Ivanchenko
27//
28// List of parameters of the pre-compound model
29// and the deexcitation module
30//
31
33#include "G4ApplicationState.hh"
34#include "G4StateManager.hh"
35#include "G4SystemOfUnits.hh"
36#include "G4UnitsTable.hh"
40#include "G4Threading.hh"
41
43{
44 fStateManager = G4StateManager::GetStateManager();
45 theMessenger = new G4DeexParametersMessenger(this);
46 Initialise();
47}
48
50{
51 delete theMessenger;
52}
53
55{
56 if(!IsLocked()) { Initialise(); }
57}
58
59void G4DeexPrecoParameters::Initialise()
60{
61 fLevelDensity = 0.075/CLHEP::MeV;
62 fR0 = 1.5*CLHEP::fermi;
63 fTransitionsR0 = 0.6*CLHEP::fermi;
64 fFBUEnergyLimit = 20.0*CLHEP::MeV;
65 fFermiEnergy = 35.0*CLHEP::MeV;
66 fPrecoLowEnergy = 0.1*CLHEP::MeV;
67 fPrecoHighEnergy = 30*CLHEP::MeV;
68 fMinExcitation = 10*CLHEP::eV;
69 fMaxLifeTime = 1*CLHEP::nanosecond;
70 fMinExPerNucleounForMF = 200*CLHEP::GeV;
71}
72
74{
75 if(IsLocked() || val <= 0.0) { return; }
76 fLevelDensity = val/CLHEP::MeV;
77}
78
80{
81 if(IsLocked() || val <= 0.0) { return; }
82 fR0 = val;
83}
84
86{
87 if(IsLocked() || val <= 0.0) { return; }
88 fTransitionsR0 = val;
89}
90
92{
93 if(IsLocked() || val <= 0.0) { return; }
94 fFBUEnergyLimit = val;
95}
96
98{
99 if(IsLocked() || val <= 0.0) { return; }
100 fFermiEnergy = val;
101}
102
104{
105 if(IsLocked() || val < 0.0) { return; }
106 fPrecoLowEnergy = val;
107}
108
110{
111 if(IsLocked() || val < 0.0) { return; }
112 fPrecoHighEnergy = val;
113}
114
116{
117 if(IsLocked() || val <= 0.0) { return; }
118 fPhenoFactor = val;
119}
120
122{
123 if(IsLocked() || val < 0.0) { return; }
124 fMinExcitation = val;
125}
126
128{
129 if(IsLocked() || val < 0.0) { return; }
130 fMaxLifeTime = val;
131}
132
134{
135 if(IsLocked() || val < 0.0) { return; }
136 fMinExPerNucleounForMF = val;
137}
138
140{
141 if(IsLocked() || n < 2) { return; }
142 fMinZForPreco = n;
143}
144
146{
147 if(IsLocked() || n < 0) { return; }
148 fMinAForPreco = n;
149}
150
152{
153 if(IsLocked() || n < 0 || n > 3) { return; }
154 fPrecoType = n;
155}
156
158{
159 if(IsLocked() || n < 0 || n > 3) { return; }
160 fDeexType = n;
161}
162
164{
165 if(IsLocked() || n < 0) { return; }
166 fTwoJMAX = n;
167}
168
170{
171 if(IsLocked()) { return; }
172 fVerbose = n;
173}
174
176{
177 if(IsLocked()) { return; }
178 fNeverGoBack = val;
179}
180
182{
183 if(IsLocked()) { return; }
184 fUseSoftCutoff = val;
185}
186
188{
189 if(IsLocked()) { return; }
190 fUseCEM = val;
191}
192
194{
195 if(IsLocked()) { return; }
196 fUseGNASH = val;
197}
198
200{
201 if(IsLocked()) { return; }
202 fUseHETC = val;
203}
204
206{
207 if(IsLocked()) { return; }
208 fUseAngularGen = val;
209}
210
212{
213 if(IsLocked()) { return; }
214 fPrecoDummy = val;
215 fDeexChannelType = fDummy;
216}
217
219{
220 if(IsLocked()) { return; }
221 fCorrelatedGamma = val;
222}
223
225{
226 if(IsLocked()) { return; }
227 fStoreAllLevels = val;
228}
229
234
236{
237 if(IsLocked()) { return; }
238 fInternalConversion = val;
239}
240
242{
243 if(IsLocked()) { return; }
244 fLD = val;
245}
246
248{
249 if(IsLocked()) { return; }
250 fFD = val;
251}
252
254{
255 if(IsLocked()) { return; }
256 fIsomerFlag = val;
257}
258
260{
261 if(IsLocked()) { return; }
262 fDeexChannelType = val;
263}
264
265std::ostream& G4DeexPrecoParameters::StreamInfo(std::ostream& os) const
266{
267 static const G4String namm[5] = {"Evaporation","GEM","Evaporation+GEM","GEMVI","Dummy"};
268 static const G4int nmm[5] = {8, 68, 68, 31, 0};
269 G4int idx = fDeexChannelType;
270
271 G4long prec = os.precision(5);
272 os << "=======================================================================" << "\n";
273 os << "====== Geant4 Native Pre-compound Model Parameters ========" << "\n";
274 os << "=======================================================================" << "\n";
275 os << "Type of pre-compound inverse x-section " << fPrecoType << "\n";
276 os << "Pre-compound model active " << (!fPrecoDummy) << "\n";
277 os << "Pre-compound excitation low energy "
278 << G4BestUnit(fPrecoLowEnergy, "Energy") << "\n";
279 os << "Pre-compound excitation high energy "
280 << G4BestUnit(fPrecoHighEnergy, "Energy") << "\n";
281 os << "Angular generator for pre-compound model " << fUseAngularGen << "\n";
282 os << "Use NeverGoBack option for pre-compound model " << fNeverGoBack << "\n";
283 os << "Use SoftCutOff option for pre-compound model " << fUseSoftCutoff << "\n";
284 os << "Use CEM transitions for pre-compound model " << fUseCEM << "\n";
285 os << "Use GNASH transitions for pre-compound model " << fUseGNASH << "\n";
286 os << "Use HETC submodel for pre-compound model " << fUseHETC << "\n";
287 os << "=======================================================================" << "\n";
288 os << "====== Nuclear De-excitation Module Parameters ========" << "\n";
289 os << "=======================================================================" << "\n";
290 os << "Type of de-excitation inverse x-section " << fDeexType << "\n";
291 os << "Type of de-excitation factory " << namm[idx] << "\n";
292 os << "Number of de-excitation channels " << nmm[idx] << "\n";
293 os << "Min excitation energy "
294 << G4BestUnit(fMinExcitation, "Energy") << "\n";
295 os << "Min energy per nucleon for multifragmentation "
296 << G4BestUnit(fMinExPerNucleounForMF, "Energy") << "\n";
297 os << "Limit excitation energy for Fermi BreakUp "
298 << G4BestUnit(fFBUEnergyLimit, "Energy") << "\n";
299 os << "Level density (1/MeV) "
300 << fLevelDensity*CLHEP::MeV << "\n";
301 os << "Use simple level density model " << fLD << "\n";
302 os << "Use discrete excitation energy of the residual " << fFD << "\n";
303 os << "Time limit for long lived isomeres "
304 << G4BestUnit(fMaxLifeTime, "Time") << "\n";
305 os << "Isomer production flag " << fIsomerFlag << "\n";
306 os << "Internal e- conversion flag "
307 << fInternalConversion << "\n";
308 os << "Store e- internal conversion data " << fStoreAllLevels << "\n";
309 os << "Correlated gamma emission flag " << fCorrelatedGamma << "\n";
310 os << "Max 2J for sampling of angular correlations " << fTwoJMAX << "\n";
311 os << "=======================================================================" << G4endl;
312 os.precision(prec);
313 return os;
314}
315
317{
319 return (verb > 0) ? std::max(fVerbose, verb) : verb;
320}
321
323{
324 if(!fIsPrinted && GetVerbose() > 0 && G4Threading::IsMasterThread()) {
326 fIsPrinted = true;
327 }
328}
329
330std::ostream& operator<< (std::ostream& os, const G4DeexPrecoParameters& par)
331{
332 return par.StreamInfo(os);
333}
334
335G4bool G4DeexPrecoParameters::IsLocked() const
336{
337 return (!G4Threading::IsMasterThread() ||
338 (fStateManager->GetCurrentState() != G4State_PreInit));
339}
@ G4State_PreInit
std::ostream & operator<<(std::ostream &os, const G4DeexPrecoParameters &par)
#define G4BestUnit(a, b)
double G4double
Definition G4Types.hh:83
long G4long
Definition G4Types.hh:87
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
void SetMinExPerNucleounForMF(G4double)
std::ostream & StreamInfo(std::ostream &os) const
void SetDeexChannelsType(G4DeexChannelType)
static G4HadronicParameters * Instance()
const G4ApplicationState & GetCurrentState() const
static G4StateManager * GetStateManager()
G4bool IsMasterThread()