Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsProtonInelasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// The lust update: M.V. Kossov, CERN/ITEP(Moscow) 17-June-02
28//
29//
30// G4 Physics class: G4ChipsProtonInelasticXS for gamma+A cross sections
31// Created: M.V. Kossov, CERN/ITEP(Moscow), 20-Dec-03
32// The last update: M.V. Kossov, CERN/ITEP (Moscow) 15-Feb-04
33//
34//
35// ****************************************************************************************
36// Short description: Cross-sections extracted (by W.Pokorski) from the CHIPS package for
37// proton-nuclear interactions. Original author: M. Kossov
38// -------------------------------------------------------------------------------------
39//
40
41
43#include "G4SystemOfUnits.hh"
44#include "G4DynamicParticle.hh"
46#include "G4Proton.hh"
47#include "G4Log.hh"
48#include "G4Exp.hh"
49#include "G4Pow.hh"
50
51
52// factory
54//
56
58{
59 // Initialization of the
60 lastLEN=0; // Pointer to the lastArray of LowEn CS
61 lastHEN=0; // Pointer to the lastArray of HighEn CS
62 lastN=0; // The last N of calculated nucleus
63 lastZ=0; // The last Z of calculated nucleus
64 lastP=0.; // Last used in cross section Momentum
65 lastTH=0.; // Last threshold momentum
66 lastCS=0.; // Last value of the Cross Section
67 lastI=0; // The last position in the DAMDB
68
69 LEN = new std::vector<G4double*>;
70 HEN = new std::vector<G4double*>;
71}
72
74{
75 std::size_t lens=LEN->size();
76 for(std::size_t i=0; i<lens; ++i) delete[] (*LEN)[i];
77 delete LEN;
78 std::size_t hens=HEN->size();
79 for(std::size_t i=0; i<hens; ++i) delete[] (*HEN)[i];
80 delete HEN;
81}
82
83void
85{
86 outFile << "G4ChipsProtonInelasticXS provides the inelastic cross\n"
87 << "section for proton nucleus scattering as a function of incident\n"
88 << "momentum. The cross section is calculated using M. Kossov's\n"
89 << "CHIPS parameterization of cross section data.\n";
90}
91
98
99
100// The main member function giving the collision cross section (P is in IU, CS is in mb)
101// Make pMom in independent units ! (Now it is MeV)
103 const G4Isotope*,
104 const G4Element*,
105 const G4Material*)
106{
107 G4double pMom=Pt->GetTotalMomentum();
108 G4int tgN = A - tgZ;
109
110 return GetChipsCrossSection(pMom, tgZ, tgN, 2212);
111}
112
114{
115
116 G4bool in=false; // By default the isotope must be found in the AMDB
117 if(tgN!=lastN || tgZ!=lastZ) // The nucleus was not the last used isotope
118 {
119 in = false; // By default the isotope haven't been found in AMDB
120 lastP = 0.; // New momentum history (nothing to compare with)
121 lastN = tgN; // The last N of the calculated nucleus
122 lastZ = tgZ; // The last Z of the calculated nucleus
123 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
124 j = 0; // A#0f records found in DB for this projectile
125 if(lastI) for(G4int i=0; i<lastI; ++i) // AMDB exists, try to find the (Z,N) isotope
126 {
127 if(colN[i]==tgN && colZ[i]==tgZ) // Try the record "i" in the AMDB
128 {
129 lastI=i; // Remember the index for future fast/last use
130 lastTH =colTH[i]; // The last THreshold (A-dependent)
131 if(pMom<=lastTH)
132 {
133 return 0.; // Energy is below the Threshold value
134 }
135 lastP =colP [i]; // Last Momentum (A-dependent)
136 lastCS =colCS[i]; // Last CrossSect (A-dependent)
137 in = true; // This is the case when the isotop is found in DB
138 // Momentum pMom is in IU ! @@ Units
139 lastCS=CalculateCrossSection(-1,j,2212,lastZ,lastN,pMom); // read & update
140 if(lastCS<=0. && pMom>lastTH) // Correct the threshold (@@ No intermediate Zeros)
141 {
142 lastCS=0.;
143 lastTH=pMom;
144 }
145 break; // Go out of the LOOP
146 }
147 j++; // Increment a#0f records found in DB
148 }
149 if(!in) // This isotope has not been calculated previously
150 {
151 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
152 lastCS=CalculateCrossSection(0,j,2212,lastZ,lastN,pMom); //calculate & create
153 //if(lastCS>0.) // It means that the AMBD was initialized
154 //{
155
156 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
157 colN.push_back(tgN);
158 colZ.push_back(tgZ);
159 colP.push_back(pMom);
160 colTH.push_back(lastTH);
161 colCS.push_back(lastCS);
162 //} // M.K. Presence of H1 with high threshold breaks the syncronization
163 return lastCS*millibarn;
164 } // End of creation of the new set of parameters
165 else
166 {
167 colP[lastI]=pMom;
168 colCS[lastI]=lastCS;
169 }
170 } // End of parameters udate
171 else if(pMom<=lastTH)
172 {
173 return 0.; // Momentum is below the Threshold Value -> CS=0
174 }
175 else // It is the last used -> use the current tables
176 {
177 lastCS=CalculateCrossSection(1,j,2212,lastZ,lastN,pMom); // Only read and UpdateDB
178 lastP=pMom;
179 }
180 return lastCS*millibarn;
181}
182
183// The main member function giving the gamma-A cross section (E in GeV, CS in mb)
184G4double G4ChipsProtonInelasticXS::CalculateCrossSection(G4int F, G4int I,
185 G4int, G4int targZ, G4int targN, G4double Momentum)
186{
187 static const G4double THmin=27.; // default minimum Momentum (MeV/c) Threshold
188 static const G4double THmiG=THmin*.001; // minimum Momentum (GeV/c) Threshold
189 static const G4double dP=10.; // step for the LEN (Low ENergy) table MeV/c
190 static const G4double dPG=dP*.001; // step for the LEN (Low ENergy) table GeV/c
191 static const G4int nL=105; // A#of LEN points in E (step 10 MeV/c)
192 static const G4double Pmin=THmin+(nL-1)*dP; // minP for the HighE part with safety
193 static const G4double Pmax=227000.; // maxP for the HEN (High ENergy) part 227 GeV
194 static const G4int nH=224; // A#of HEN points in lnE
195 static const G4double milP=G4Log(Pmin);// Low logarithm energy for the HEN part
196 static const G4double malP=G4Log(Pmax);// High logarithm energy (each 2.75 percent)
197 static const G4double dlP=(malP-milP)/(nH-1); // Step in log energy in the HEN part
198 static const G4double milPG=G4Log(.001*Pmin);// Low logarithmEnergy for HEN part GeV/c
199 G4double sigma=0.;
200 if(F&&I) sigma=0.; // @@ *!* Fake line *!* to use F & I !!!Temporary!!!
201 //G4double A=targN+targZ; // A of the target
202 if(F<=0) // This isotope was not the last used isotop
203 {
204 if(F<0) // This isotope was found in DAMDB =-----=> RETRIEVE
205 {
206 G4int sync=(G4int)LEN->size();
207 if(sync<=I) G4cout<<"*!*G4QProtonNuclCS::CalcCrossSect:Sync="<<sync<<"<="<<I<<G4endl;
208 lastLEN=(*LEN)[I]; // Pointer to prepared LowEnergy cross sections
209 lastHEN=(*HEN)[I]; // Pointer to prepared High Energy cross sections
210 }
211 else // This isotope wasn't calculated before => CREATE
212 {
213 lastLEN = new G4double[nL]; // Allocate memory for the new LEN cross sections
214 lastHEN = new G4double[nH]; // Allocate memory for the new HEN cross sections
215 // --- Instead of making a separate function ---
216 G4double P=THmiG; // Table threshold in GeV/c
217 for(G4int k=0; k<nL; ++k)
218 {
219 lastLEN[k] = CrossSectionLin(targZ, targN, P);
220 P+=dPG;
221 }
222 G4double lP=milPG;
223 for(G4int n=0; n<nH; ++n)
224 {
225 lastHEN[n] = CrossSectionLog(targZ, targN, lP);
226 lP+=dlP;
227 }
228 // --- End of possible separate function
229 // *** The synchronization check ***
230 G4int sync=(G4int)LEN->size();
231 if(sync!=I)
232 {
233 G4cout<<"***G4ChipsProtonNuclCS::CalcCrossSect: Sinc="<<sync<<"#"<<I<<", Z=" <<targZ
234 <<", N="<<targN<<", F="<<F<<G4endl;
235 //G4Exception("G4ProtonNuclearCS::CalculateCS:","39",FatalException,"overflow DB");
236 }
237 LEN->push_back(lastLEN); // remember the Low Energy Table
238 HEN->push_back(lastHEN); // remember the High Energy Table
239 } // End of creation of the new set of parameters
240 } // End of parameters udate
241 // =------------------= NOW the Magic Formula =-----------------------=
242 if (Momentum<lastTH) return 0.; // It must be already checked in the interface class
243 else if (Momentum<Pmin) // High Energy region
244 {
245 sigma=EquLinearFit(Momentum,nL,THmin,dP,lastLEN);
246 }
247 else if (Momentum<Pmax) // High Energy region
248 {
249 G4double lP=G4Log(Momentum);
250 sigma=EquLinearFit(lP,nH,milP,dlP,lastHEN);
251 }
252 else // UHE region (calculation, not frequent)
253 {
254 G4double P=0.001*Momentum; // Approximation formula is for P in GeV/c
255 sigma=CrossSectionFormula(targZ, targN, P, G4Log(P));
256 }
257 if(sigma<0.) return 0.;
258 return sigma;
259}
260
261// Electromagnetic momentum-threshold (in MeV/c)
262G4double G4ChipsProtonInelasticXS::ThresholdMomentum(G4int tZ, G4int tN)
263{
264 static const G4double third=1./3.;
265 static const G4double pM = G4Proton::Proton()->Definition()->GetPDGMass(); // Projectile mass in MeV
266 static const G4double tpM= pM+pM; // Doubled projectile mass (MeV)
267
268 G4double tA=tZ+tN;
269 if(tZ<.99 || tN<0.) return 0.;
270 else if(tZ==1 && tN==0) return 800.; // A threshold on the free proton
271 //G4double dE=1.263*tZ/(1.+G4Pow::GetInstance()->powA(tA,third));
272 G4double dE=tZ/(1.+G4Pow::GetInstance()->powA(tA,third)); // Safety for diffused edge of the nucleus (QE)
273 G4double tM=931.5*tA;
274 G4double T=dE+dE*(dE/2+pM)/tM;
275 return std::sqrt(T*(tpM+T));
276}
277
278// Calculation formula for proton-nuclear inelastic cross-section (mb) (P in GeV/c)
279G4double G4ChipsProtonInelasticXS::CrossSectionLin(G4int tZ, G4int tN, G4double P)
280{
281 G4double sigma=0.;
282 if(P<ThresholdMomentum(tZ,tN)*.001) return sigma;
283 G4double lP=G4Log(P);
284 if(tZ==1&&!tN){if(P>.35) sigma=CrossSectionFormula(tZ,tN,P,lP);}// s(pp)=0 below 350Mev/c
285 else if(tZ<97 && tN<152) // General solution
286 {
287 G4double pex=0.;
288 G4double pos=0.;
289 G4double wid=1.;
290 if(tZ==13 && tN==14) // Excited metastable states
291 {
292 pex=230.;
293 pos=.13;
294 wid=8.e-5;
295 }
296 else if(tZ<7)
297 {
298 if(tZ==6 && tN==6)
299 {
300 pex=320.;
301 pos=.14;
302 wid=7.e-6;
303 }
304 else if(tZ==5 && tN==6)
305 {
306 pex=270.;
307 pos=.17;
308 wid=.002;
309 }
310 else if(tZ==4 && tN==5)
311 {
312 pex=600.;
313 pos=.132;
314 wid=.005;
315 }
316 else if(tZ==3 && tN==4)
317 {
318 pex=280.;
319 pos=.19;
320 wid=.0025;
321 }
322 else if(tZ==3 && tN==3)
323 {
324 pex=370.;
325 pos=.171;
326 wid=.006;
327 }
328 else if(tZ==2 && tN==1)
329 {
330 pex=30.;
331 pos=.22;
332 wid=.0005;
333 }
334 }
335 sigma=CrossSectionFormula(tZ,tN,P,lP);
336 if(pex>0.)
337 {
338 G4double dp=P-pos;
339 sigma+=pex*G4Exp(-dp*dp/wid);
340 }
341 }
342 else
343 {
344 G4cerr<<"-Warning-G4ChipsProtonNuclearXS::CSLin:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
345 sigma=0.;
346 }
347 if(sigma<0.) return 0.;
348 return sigma;
349}
350
351// Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
352G4double G4ChipsProtonInelasticXS::CrossSectionLog(G4int tZ, G4int tN, G4double lP)
353{
354 G4double P=G4Exp(lP);
355 return CrossSectionFormula(tZ, tN, P, lP);
356}
357// Calculation formula for proton-nuclear inelastic cross-section (mb) log(P in GeV/c)
358G4double G4ChipsProtonInelasticXS::CrossSectionFormula(G4int tZ, G4int tN,
359 G4double P, G4double lP)
360{
361 G4double sigma=0.;
362 if(tZ==1 && !tN) // pp interaction (from G4QuasiElasticRatios)
363 {
364 G4double El(0.),To(0.); // Uzhi
365 if(P<0.1) // Copied from G4QuasiElasticRatios Uzhi / start
366 {
367 G4double p2=P*P;
368 El=1./(0.00012+p2*0.2);
369 To=El;
370 }
371 else if(P>1000.)
372 {
373 G4double lp=G4Log(P)-3.5;
374 G4double lp2=lp*lp;
375 El=0.0557*lp2+6.72;
376 To=0.3*lp2+38.2;
377 }
378 else
379 {
380 G4double p2=P*P;
381 G4double LE=1./(0.00012+p2*0.2);
382 G4double lp=G4Log(P)-3.5;
383 G4double lp2=lp*lp;
384 G4double rp2=1./p2;
385 El=LE+(0.0557*lp2+6.72+32.6/P)/(1.+rp2/P);
386 To=LE+(0.3 *lp2+38.2+52.7*rp2)/(1.+2.72*rp2*rp2);
387 } // Copied from G4QuasiElasticRatios Uzhi / end
388
389/* // Uzhi 4.03.2013
390 G4double p2=P*P;
391 G4double lp=lP-3.5;
392 G4double lp2=lp*lp;
393 G4double rp2=1./p2;
394 G4double El=(.0557*lp2+6.72+30./P)/(1.+.49*rp2/P);
395 G4double To=(.3*lp2+38.2)/(1.+.54*rp2*rp2);
396*/ // Uzhi 4.03.2013
397
398 sigma=To-El;
399 }
400 else if(tZ<97 && tN<152) // General solution
401 {
402 //G4double lP=G4Log(P); // Already calculated
403 G4double d=lP-4.2;
404 G4double p2=P*P;
405 G4double p4=p2*p2;
406 G4double a=tN+tZ; // A of the target
407 G4double al=G4Log(a);
408 G4double sa=std::sqrt(a);
409 G4double a2=a*a;
410 G4double a2s=a2*sa;
411 G4double a4=a2*a2;
412 G4double a8=a4*a4;
413 G4double a12=a8*a4;
414 G4double a16=a8*a8;
415 G4double c=(170.+3600./a2s)/(1.+65./a2s);
416 G4double dl=al-3.;
417 G4double dl2=dl*dl;
418 G4double r=.21+.62*dl2/(1.+.5*dl2);
419 G4double gg=40.*G4Exp(al*0.712)/(1.+12.2/a)/(1.+34./a2);
420 G4double e=318.+a4/(1.+.0015*a4/G4Exp(al*0.09))/(1.+4.e-28*a12)+
421 8.e-18/(1./a16+1.3e-20)/(1.+1.e-21*a12);
422 G4double ss=3.57+.009*a2/(1.+.0001*a2*a);
423 G4double h=(.01/a4+2.5e-6/a)*(1.+6.e-6*a2*a)/(1.+6.e7/a12/a2);
424 sigma=(c+d*d)/(1.+r/p4)+(gg+e*G4Exp(-ss*P))/(1.+h/p4/p4);
425 }
426 else
427 {
428 G4cerr<<"-Warning-G4QProtonNuclearCroSect::CSForm:*Bad A* Z="<<tZ<<", N="<<tN<<G4endl;
429 sigma=0.;
430 }
431 if(sigma<0.) return 0.;
432 return sigma;
433}
434
435G4double G4ChipsProtonInelasticXS::EquLinearFit(G4double X, G4int N, G4double X0, G4double DX, G4double* Y)
436{
437 if(DX<=0. || N<2)
438 {
439 G4cerr<<"***G4ChipsProtonInelasticXS::EquLinearFit: DX="<<DX<<", N="<<N<<G4endl;
440 return Y[0];
441 }
442
443 G4int N2=N-2;
444 G4double d=(X-X0)/DX;
445 G4int jj=static_cast<int>(d);
446 if (jj<0) jj=0;
447 else if(jj>N2) jj=N2;
448 d-=jj; // excess
449 G4double yi=Y[jj];
450 G4double sigma=yi+(Y[jj+1]-yi)*d;
451
452 return sigma;
453}
@ LE
Definition Evaluator.cc:68
#define G4_DECLARE_XS_FACTORY(cross_section)
G4double Y(G4double density)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
virtual void CrossSectionDescription(std::ostream &) const
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
G4double GetTotalMomentum() const
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition G4Pow.hh:230
static G4Proton * Definition()
Definition G4Proton.cc:45
static G4Proton * Proton()
Definition G4Proton.cc:90
#define N
Definition crc32.c:57