Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLNDeltaEtaProductionChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLRandom.hh"
42#include "G4INCLGlobals.hh"
43#include "G4INCLLogger.hh"
45
46namespace G4INCL {
47
48 const G4double NDeltaEtaProductionChannel::angularSlope = 6.;
49 const G4int NDeltaEtaProductionChannel::maxTries = 100000;
50
52 : particle1(p1), particle2(p2)
53 {}
54
56
57 G4double NDeltaEtaProductionChannel::sampleDeltaMass(G4double ecmorigin) {
58// const G4double ecm = ecmorigin - 686.987; // 686.987 MeV translation to open pion(delta) production in NNEta
59 const G4double ecm = ecmorigin - 581.437; // 581.437 MeV translation to open pion(delta) production in NNEta
60 const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0;
61 const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
62 const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
63// assert(deltaMassRndmRange>0.);
64
65 G4double y=ecm*ecm;
66 G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
67 G4double q3=std::pow(std::sqrt(q2), 3.);
68 const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
69 G4double x;
70
71 G4int nTries = 0;
72 G4bool success = false;
73 while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
74 if(++nTries >= maxTries) {
75 INCL_WARN("NDeltaEtaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
76 << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
78 }
79
80 G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
81 y = std::tan(rndm);
83// assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0);
84
85 // generation of the delta mass with the penetration factor
86 // (see prc56(1997)2431)
87 y=x*x;
88 q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
89 q3=std::pow(std::sqrt(q2), 3.);
90 const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
91 rndm = Random::shoot();
92 if (rndm*f3max < f3)
93 success = true;
94 }
95 return x;
96 }
97
99
100/**
101*
102* Unlike NN -> NDelta, NN -> NDeltaEta is drawn from a phase-space generator
103*
104**/
105
106 G4int is1=ParticleTable::getIsospin(particle1->getType());
107 G4int is2=ParticleTable::getIsospin(particle2->getType());
108
109 ParticleList list;
110 list.push_back(particle1);
111 list.push_back(particle2);
112
113// isospin Repartition of N and Delta;
114 G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
115 const G4int isospin = is1+is2;
116
117 G4double rndm = 0.0;
118 G4double xmdel = sampleDeltaMass(ecm);
119
120 G4int index2=0;
121 if (isospin == 0) { // pn case
122 rndm = Random::shoot();
123 if (rndm < 0.5) index2=1;
124 }
125
126 if (isospin == 0) {
127 if(index2 == 1) {
128 G4int isi=is1;
129 is1=is2;
130 is2=isi;
131 }
132// particle1->setHelicity(0.0);
133 } else {
134 rndm = Random::shoot();
135 if (rndm >= 0.25) {
136 is1=3*is1;
137 is2=-is2;
138 }
139// particle1->setHelicity(ctet*ctet);
140 }
141
143 particle1->setType(DeltaMinus);
144 } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
145 particle1->setType(DeltaZero);
146 } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
147 particle1->setType(DeltaPlus);
148 } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
149 particle1->setType(DeltaPlusPlus);
150 }
151
153 particle2->setType(Proton);
154 } else if(is2 == ParticleTable::getIsospin(Neutron)) {
155 particle2->setType(Neutron);
156 }
157
158 if(particle1->isDelta()) particle1->setMass(xmdel);
159 if(particle2->isDelta()) particle2->setMass(xmdel);
160
161 const ThreeVector &rcolnucleon1 = particle1->getPosition();
162 const ThreeVector &rcolnucleon2 = particle2->getPosition();
163 const ThreeVector rcol = (rcolnucleon1+rcolnucleon2)*0.5;
164 const ThreeVector zero;
165 Particle *eta = new Particle(Eta,zero,rcol);
166 list.push_back(eta);
167 fs->addCreatedParticle(eta);
168
169 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
170 G4int biasIndex = ((Random::shoot()<0.5) ? 0 : 1);
171 PhaseSpaceGenerator::generateBiased(sqrtS, list, biasIndex, angularSlope);
172
173 const ThreeVector vz(0.0,0.0,1.0);
174 G4double ctet=(particle1->getMomentum().dot(vz))/particle1->getMomentum().mag();
175 if (isospin == 0)
176 particle1->setHelicity(0.0);
177 else
178 particle1->setHelicity(ctet*ctet);
179
180 fs->addModifiedParticle(particle1);
181 fs->addModifiedParticle(particle2);
182
183 }
184
185}
#define INCL_WARN(x)
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
void addModifiedParticle(Particle *p)
void addCreatedParticle(Particle *p)
void setMass(G4double mass)
void setHelicity(G4double h)
const G4INCL::ThreeVector & getPosition() const
const G4INCL::ThreeVector & getMomentum() const
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4bool isDelta() const
Is it a Delta?
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
const G4double effectiveDeltaWidth
const G4double effectiveDeltaMass
G4ThreadLocal G4double minDeltaMass
G4ThreadLocal G4double minDeltaMassRndm
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
G4double shoot()