54G4bool G4FSALBogackiShampine45::fPreparedConstants =
false;
55G4double G4FSALBogackiShampine45::bi[12][7];
60 G4int noIntegrationVariables,
64 const G4int numberOfVariables = noIntegrationVariables;
70 ak2 =
new G4double[numberOfVariables];
71 ak3 =
new G4double[numberOfVariables];
72 ak4 =
new G4double[numberOfVariables];
73 ak5 =
new G4double[numberOfVariables];
74 ak6 =
new G4double[numberOfVariables];
75 ak7 =
new G4double[numberOfVariables];
76 ak8 =
new G4double[numberOfVariables];
78 ak9 =
new G4double[numberOfVariables];
79 ak10 =
new G4double[numberOfVariables];
80 ak11 =
new G4double[numberOfVariables];
81 DyDx =
new G4double[numberOfVariables];
84 const G4int numStateVars = std::max(noIntegrationVariables,
92 fLastInitialVector =
new G4double[numStateVars] ;
93 fLastFinalVector =
new G4double[numStateVars] ;
94 fLastDyDx =
new G4double[numberOfVariables];
96 fMidVector =
new G4double[numStateVars];
97 fMidError =
new G4double[numStateVars];
99 pseudoDydx_for_DistChord =
new G4double[numberOfVariables];
101 fMidVector =
new G4double[numberOfVariables];
102 fMidError =
new G4double[numberOfVariables];
108 if( !fPreparedConstants )
134 delete [] fLastInitialVector;
135 delete [] fLastFinalVector;
137 delete [] fMidVector;
142 delete [] pseudoDydx_for_DistChord;
162 b31 = 2.0/27.0 , b32 = 4.0/27.0,
164 b41 = 183.0/1372.0 , b42 = -162.0/343.0, b43 = 1053.0/1372.0,
166 b51 = 68.0/297.0, b52 = -4.0/11.0,
167 b53 = 42.0/143.0, b54 = 1960.0/3861.0,
169 b61 = 597.0/22528.0, b62 = 81.0/352.0,
170 b63 = 63099.0/585728.0, b64 = 58653.0/366080.0,
171 b65 = 4617.0/20480.0,
173 b71 = 174197.0/959244.0, b72 = -30942.0/79937.0,
174 b73 = 8152137.0/19744439.0, b74 = 666106.0/1039181.0,
175 b75 = -29421.0/29068.0, b76 = 482048.0/414219.0,
177 b81 = 587.0/8064.0, b82 = 0.0,
178 b83 = 4440339.0/15491840.0, b84 = 24353.0/124800.0,
179 b85 = 387.0/44800.0, b86 = 2152.0/5985.0,
180 b87 = 7267.0/94080.0,
197 dc1 = b81 - 2479.0/34992.0 ,
199 dc3 = b83 - 123.0/416.0 ,
200 dc4 = b84 - 612941.0/3411720.0,
201 dc5 = b85 - 43.0/1440.0,
202 dc6 = b86 - 2272.0/6561.0,
203 dc7 = b87 - 79937.0/1113912.0,
204 dc8 = -3293.0/556956.0;
210 yOut[7] = yTemp[7] = yIn[7];
214 for(i=0; i<numberOfVariables; ++i)
221 for(i=0; i<numberOfVariables; ++i)
223 yTemp[i] = yIn[i] + b21*Step*DyDx[i] ;
227 for(i=0; i<numberOfVariables; ++i)
229 yTemp[i] = yIn[i] + Step*(b31*DyDx[i] + b32*ak2[i]) ;
233 for(i=0; i<numberOfVariables; ++i)
235 yTemp[i] = yIn[i] + Step*(b41*DyDx[i] + b42*ak2[i] + b43*ak3[i]) ;
239 for(i=0; i<numberOfVariables; ++i)
241 yTemp[i] = yIn[i] + Step*(b51*DyDx[i] + b52*ak2[i] + b53*ak3[i] +
246 for(i=0; i<numberOfVariables; ++i)
248 yTemp[i] = yIn[i] + Step*(b61*DyDx[i] + b62*ak2[i] + b63*ak3[i] +
249 b64*ak4[i] + b65*ak5[i]) ;
253 for(i=0; i<numberOfVariables; ++i)
255 yTemp[i] = yIn[i] + Step*(b71*DyDx[i] + b72*ak2[i] + b73*ak3[i] +
256 b74*ak4[i] + b75*ak5[i] + b76*ak6[i]);
260 for(i=0; i<numberOfVariables; ++i)
262 yOut[i] = yIn[i] + Step*(b81*DyDx[i] + b82*ak2[i] + b83*ak3[i] +
263 b84*ak4[i] + b85*ak5[i] + b86*ak6[i] +
269 for(i=0; i<numberOfVariables; ++i)
272 yErr[i] = Step*(dc1*DyDx[i] + dc2*ak2[i] + dc3*ak3[i] + dc4*ak4[i] +
273 dc5*ak5[i] + dc6*ak6[i] + dc7*ak7[i] + dc8*ak8[i]) ;
278 nextDydx[i] = ak8[i];
282 fLastInitialVector[i] = yIn[i] ;
283 fLastFinalVector[i] = yOut[i];
284 fLastDyDx[i] = DyDx[i];
286 fLastStepLength = Step;
302 fLastInitialVector[1], fLastInitialVector[2]);
304 fLastFinalVector[1], fLastFinalVector[2]);
308 fAuxStepper->
Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength,
309 fMidVector, fMidError, pseudoDydx_for_DistChord );
311 midPoint =
G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2] );
316 if (initialPoint != finalPoint)
319 distChord = distLine;
323 distChord = (midPoint-initialPoint).mag();
330void G4FSALBogackiShampine45::PrepareConstants()
338 for(
auto i=1; i<12; ++i)
340 for(
auto j=1; j<7; ++j)
346 bi[1][6] = -12134338393.0/1050809760.0 ,
347 bi[1][5] = -1620741229.0/50038560.0 ,
348 bi[1][4] = -2048058893.0/59875200.0 ,
349 bi[1][3] = -87098480009.0/5254048800.0 ,
350 bi[1][2] = -11513270273.0/3502699200.0 ,
352 bi[3][6] = -33197340367.0/1218433216.0 ,
353 bi[3][5] = -539868024987.0/6092166080.0 ,
354 bi[3][4] = -39991188681.0/374902528.0 ,
355 bi[3][3] = -69509738227.0/1218433216.0 ,
356 bi[3][2] = -29327744613.0/2436866432.0 ,
358 bi[4][6] = -284800997201.0/19905339168.0 ,
359 bi[4][5] = -7896875450471.0/165877826400.0 ,
360 bi[4][4] = -333945812879.0/5671036800.0 ,
361 bi[4][3] = -16209923456237.0/497633479200.0 ,
362 bi[4][2] = -2382590741699.0/331755652800.0 ,
364 bi[5][6] = -540919.0/741312.0 ,
365 bi[5][5] = -103626067.0/43243200.0 ,
366 bi[5][4] = -633779.0/211200.0 ,
367 bi[5][3] = -32406787.0/18532800.0 ,
368 bi[5][2] = -36591193.0/86486400.0 ,
370 bi[6][6] = 7157998304.0/374350977.0 ,
371 bi[6][5] = 30405842464.0/623918295.0 ,
372 bi[6][4] = 183022264.0/5332635.0 ,
373 bi[6][3] = -3357024032.0/1871754885.0 ,
374 bi[6][2] = -611586736.0/89131185.0 ,
376 bi[7][6] = -138073.0/9408.0 ,
377 bi[7][5] = -719433.0/15680.0 ,
378 bi[7][4] = -1620541.0/31360.0 ,
379 bi[7][3] = -385151.0/15680.0 ,
380 bi[7][2] = -65403.0/15680.0 ,
382 bi[8][6] = 1245.0/64.0 ,
383 bi[8][5] = 3991.0/64.0 ,
384 bi[8][4] = 4715.0/64.0 ,
385 bi[8][3] = 2501.0/64.0 ,
386 bi[8][2] = 149.0/16.0 ,
389 bi[9][6] = 55.0/3.0 ,
392 bi[9][3] = 199.0/3.0 ,
395 bi[10][6] = -1774004627.0/75810735.0 ,
396 bi[10][5] = -1774004627.0/25270245.0 ,
397 bi[10][4] = -26477681.0/359975.0 ,
398 bi[10][3] = -11411880511.0/379053675.0 ,
399 bi[10][2] = -423642896.0/126351225.0 ,
418 a93 = 10256301.0/35409920.0 ,
419 a94 = 2307361.0/17971200.0 ,
420 a95 = -387.0/102400.0 ,
422 a97 = -7267.0/215040.0 ,
425 a101 = -837888343715.0/13176988637184.0 ,
426 a102 = 30409415.0/52955362.0 ,
427 a103 = -48321525963.0/759168069632.0 ,
428 a104 = 8530738453321.0/197654829557760.0 ,
429 a105 = 1361640523001.0/1626788720640.0 ,
430 a106 = -13143060689.0/38604458898.0 ,
431 a107 = 18700221969.0/379584034816.0 ,
432 a108 = -5831595.0/847285792.0 ,
433 a109 = -5183640.0/26477681.0 ,
435 a111 = 98719073263.0/1551965184000.0 ,
436 a112 = 1307.0/123552.0 ,
437 a113 = 4632066559387.0/70181753241600.0 ,
438 a114 = 7828594302389.0/382182512025600.0 ,
439 a115 = 40763687.0/11070259200.0 ,
440 a116 = 34872732407.0/224610586200.0 ,
441 a117 = -2561897.0/30105600.0 ,
444 a1110 = -1403317093.0/11371610250.0 ;
450 for(
G4int i=0; i<numberOfVariables; ++i)
457 yOut[7] = yTemp[7] = yIn[7];
461 for(
G4int i=0; i<numberOfVariables; ++i)
463 yTemp[i] = yIn[i] + Step*(a91*dydx[i] + a92*ak2[i] + a93*ak3[i] +
464 a94*ak4[i] + a95*ak5[i] + a96*ak6[i] +
465 a97*ak7[i] + a98*ak8[i] );
470 for(
G4int i=0; i<numberOfVariables; ++i)
472 yTemp[i] = yIn[i] + Step*(a101*dydx[i] + a102*ak2[i] + a103*ak3[i] +
473 a104*ak4[i] + a105*ak5[i] + a106*ak6[i] +
474 a107*ak7[i] + a108*ak8[i] + a109*ak9[i] );
479 for(
G4int i=0; i<numberOfVariables; ++i)
481 yTemp[i] = yIn[i] + Step*(a111*dydx[i] + a112*ak2[i] + a113*ak3[i] +
482 a114*ak4[i] + a115*ak5[i] + a116*ak6[i] +
483 a117*ak7[i] + a118*ak8[i] + a119*ak9[i] +
493 for(
auto i=1; i<=11; ++i)
497 for(
auto j=1; j<=6; ++j)
499 b[i] += bi[i][j]*tau;
504 for(
G4int i=0; i<numberOfVariables; ++i)
506 yOut[i] = yIn[i] + Step*(b[1]*dydx[i] + b[2]*ak2[i] + b[3]*ak3[i] +
507 b[4]*ak4[i] + b[5]*ak5[i] + b[6]*ak6[i] +
508 b[7]*ak7[i] + b[8]*ak8[i] + b[9]*ak9[i] +
509 b[10]*ak10[i] + b[11]*ak11[i] );
CLHEP::Hep3Vector G4ThreeVector
G4double DistChord() const override
~G4FSALBogackiShampine45() override
void interpolate(const G4double yInput[], const G4double dydx[], G4double yOut[], G4double Step, G4double tau)
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[], G4double nextDydx[]) override
G4FSALBogackiShampine45(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6, G4bool primary=true)
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
G4int GetNumberOfVariables() const
void RightHandSide(const double y[], double dydx[])
G4int GetNumberOfStateVariables() const