Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChipsKaonMinusElasticXS.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// G4 Physics class: G4ChipsKaonMinusElasticXS for pA elastic cross sections
30// Created: M.V. Kossov, CERN/ITEP(Moscow), 5-Feb-2010
31// The last update: M.V. Kossov, CERN/ITEP (Moscow) 5-Feb-2010
32//
33// -------------------------------------------------------------------------------
34// Short description: Interaction cross-sections for the elastic process.
35// Class extracted from CHIPS and integrated in Geant4 by W.Pokorski
36// -------------------------------------------------------------------------------
37//
38
40#include "G4SystemOfUnits.hh"
41#include "G4DynamicParticle.hh"
43#include "G4KaonMinus.hh"
44#include "G4Nucleus.hh"
45#include "G4ParticleTable.hh"
46#include "G4NucleiProperties.hh"
47#include "G4IonTable.hh"
48#include "G4AutoLock.hh"
49
50// factory
52//
54
55
56namespace {
57 G4double mK;//= G4KaonMinus::KaonMinus()->GetPDGMass()*.001; // MeV to GeV//Cannot initialize here, needs particles
58 G4double mK2;//= mK*mK;
60 const G4double GeVSQ=gigaelectronvolt*gigaelectronvolt;
61 const G4double third=1./3.;
62 const G4double fifth=1./5.;
63 const G4double sevth=1./7.;
64 const G4double pwd=2727;
65 const G4int n_kmpel=36; // #of parameters for pp-elastic ( < nPoints=128)
66 // -0- -1- -2- -3- -4- -5- -6- -7- -8- -9--10- -11--12-
67 const G4double kmp_el[n_kmpel]={5.2,.0557,3.5,2.23,.7,.075,.004,.39,.000156,.15,1.,.0156,5.,
68 74.,3.,3.4,.2,.17,.001,8.,.055,3.64,5.e-5,4000.,1500.,.46,
69 1.2e6,3.5e6,5.e-5,1.e10,8.5e8,1.e10,1.1,3.4e6,6.8e6,0.};
70 // -13-14--15-16--17--18--19- -20- -21- -22- -23- -24- -25-
71 // -26- -27- -28- -29- -30- -31- -32- -33- -34- -35-
72 const G4double HGeVSQ=gigaelectronvolt*gigaelectronvolt/2.;
73}
74
76{
77 G4AutoLock l(&initM);
79 mK2 = mK*mK;
80 l.unlock();
81 lPMin=-8.; //Min tabulatedLogarithmMomentum/D
82 lPMax= 8.; //Max tabulatedLogarithmMomentum/D
83 dlnP=(lPMax-lPMin)/nLast;// LogStep inTable /D
84 onlyCS=true;//Flag toCalculOnlyCS(not Si/Bi)/L
85 lastSIG=0.; //Last calculated cross section /L
86 lastLP=-10.;//LastLog(mom_of IncidentHadron)/L
87 lastTM=0.; //Last t_maximum /L
88 theSS=0.; //TheLastSqSlope of 1st difr.Max/L
89 theS1=0.; //TheLastMantissa of 1st difrMax/L
90 theB1=0.; //TheLastSlope of 1st difructMax/L
91 theS2=0.; //TheLastMantissa of 2nd difrMax/L
92 theB2=0.; //TheLastSlope of 2nd difructMax/L
93 theS3=0.; //TheLastMantissa of 3d difr.Max/L
94 theB3=0.; //TheLastSlope of 3d difruct.Max/L
95 theS4=0.; //TheLastMantissa of 4th difrMax/L
96 theB4=0.; //TheLastSlope of 4th difructMax/L
97 lastTZ=0; // Last atomic number of theTarget
98 lastTN=0; // Last # of neutrons in theTarget
99 lastPIN=0.;// Last initialized max momentum
100 lastCST=0; // Elastic cross-section table
101 lastPAR=0; // ParametersForFunctionCalculation
102 lastSST=0; // E-dep ofSqardSlope of 1st difMax
103 lastS1T=0; // E-dep of mantissa of 1st dif.Max
104 lastB1T=0; // E-dep of the slope of 1st difMax
105 lastS2T=0; // E-dep of mantissa of 2nd difrMax
106 lastB2T=0; // E-dep of the slope of 2nd difMax
107 lastS3T=0; // E-dep of mantissa of 3d difr.Max
108 lastB3T=0; // E-dep of the slope of 3d difrMax
109 lastS4T=0; // E-dep of mantissa of 4th difrMax
110 lastB4T=0; // E-dep of the slope of 4th difMax
111 lastN=0; // The last N of calculated nucleus
112 lastZ=0; // The last Z of calculated nucleus
113 lastP=0.; // LastUsed inCrossSection Momentum
114 lastTH=0.; // Last threshold momentum
115 lastCS=0.; // Last value of the Cross Section
116 lastI=0; // The last position in the DAMDB
117}
118
120{
121 std::vector<G4double*>::iterator pos;
122 for (pos=CST.begin(); pos<CST.end(); pos++)
123 { delete [] *pos; }
124 CST.clear();
125 for (pos=PAR.begin(); pos<PAR.end(); pos++)
126 { delete [] *pos; }
127 PAR.clear();
128 for (pos=SST.begin(); pos<SST.end(); pos++)
129 { delete [] *pos; }
130 SST.clear();
131 for (pos=S1T.begin(); pos<S1T.end(); pos++)
132 { delete [] *pos; }
133 S1T.clear();
134 for (pos=B1T.begin(); pos<B1T.end(); pos++)
135 { delete [] *pos; }
136 B1T.clear();
137 for (pos=S2T.begin(); pos<S2T.end(); pos++)
138 { delete [] *pos; }
139 S2T.clear();
140 for (pos=B2T.begin(); pos<B2T.end(); pos++)
141 { delete [] *pos; }
142 B2T.clear();
143 for (pos=S3T.begin(); pos<S3T.end(); pos++)
144 { delete [] *pos; }
145 S3T.clear();
146 for (pos=B3T.begin(); pos<B3T.end(); pos++)
147 { delete [] *pos; }
148 B3T.clear();
149 for (pos=S4T.begin(); pos<S4T.end(); pos++)
150 { delete [] *pos; }
151 S4T.clear();
152 for (pos=B4T.begin(); pos<B4T.end(); pos++)
153 { delete [] *pos; }
154 B4T.clear();
155}
156
157void
159{
160 outFile << "G4ChipsKaonMinusElasticXS provides the elastic cross\n"
161 << "section for K- nucleus scattering as a function of incident\n"
162 << "momentum. The cross section is calculated using M. Kossov's\n"
163 << "CHIPS parameterization of cross section data.\n";
164}
165
167 const G4Element*,
168 const G4Material*)
169{
170 return true;
171}
172
173// The main member function giving the collision cross section (P is in IU, CS is in mb)
174// Make pMom in independent units ! (Now it is MeV)
176 const G4Isotope*,
177 const G4Element*,
178 const G4Material*)
179{
180 G4double pMom=Pt->GetTotalMomentum();
181 G4int tgN = A - tgZ;
182
183 return GetChipsCrossSection(pMom, tgZ, tgN, -321);
184}
185
187{
188
189 G4bool fCS = false;
190
191 G4double pEn=pMom;
192 onlyCS=fCS;
193
194 G4bool in=false; // By default the isotope must be found in the AMDB
195 lastP = 0.; // New momentum history (nothing to compare with)
196 lastN = tgN; // The last N of the calculated nucleus
197 lastZ = tgZ; // The last Z of the calculated nucleus
198 lastI = (G4int)colN.size(); // Size of the Associative Memory DB in the heap
199 if(lastI) for(G4int i=0; i<lastI; ++i) // Loop over proj/tgZ/tgN lines of DB
200 { // The nucleus with projPDG is found in AMDB
201 if(colN[i]==tgN && colZ[i]==tgZ) // Isotope is foind in AMDB
202 {
203 lastI=i;
204 lastTH =colTH[i]; // Last THreshold (A-dependent)
205 if(pEn<=lastTH)
206 {
207 return 0.; // Energy is below the Threshold value
208 }
209 lastP =colP [i]; // Last Momentum (A-dependent)
210 lastCS =colCS[i]; // Last CrossSect (A-dependent)
211 // if(std::fabs(lastP/pMom-1.)<tolerance) //VI (do not use tolerance)
212 if(lastP == pMom) // Do not recalculate
213 {
214 CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // Update param's only
215 return lastCS*millibarn; // Use theLastCS
216 }
217 in = true; // This is the case when the isotop is found in DB
218 // Momentum pMom is in IU ! @@ Units
219 lastCS=CalculateCrossSection(fCS,-1,i,-321,lastZ,lastN,pMom); // read & update
220 if(lastCS<=0. && pEn>lastTH) // Correct the threshold
221 {
222 lastTH=pEn;
223 }
224 break; // Go out of the LOOP with found lastI
225 }
226 } // End of attampt to find the nucleus in DB
227 if(!in) // This nucleus has not been calculated previously
228 {
229 //!!The slave functions must provide cross-sections in millibarns (mb) !! (not in IU)
230 lastCS=CalculateCrossSection(fCS,0,lastI,-321,lastZ,lastN,pMom);//calculate&create
231 if(lastCS<=0.)
232 {
233 lastTH = 0; //ThresholdEnergy(tgZ, tgN); // The Threshold Energy which is now the last
234 if(pEn>lastTH)
235 {
236 lastTH=pEn;
237 }
238 }
239 colN.push_back(tgN);
240 colZ.push_back(tgZ);
241 colP.push_back(pMom);
242 colTH.push_back(lastTH);
243 colCS.push_back(lastCS);
244 return lastCS*millibarn;
245 } // End of creation of the new set of parameters
246 else
247 {
248 colP[lastI]=pMom;
249 colCS[lastI]=lastCS;
250 }
251 return lastCS*millibarn;
252}
253
254// Calculation of total elastic cross section (p in IU, CS in mb) @@ Units (?)
255// F=0 - create AMDB, F=-1 - read&update AMDB, F=1 - update AMDB (sinchro with higher AMDB)
256G4double G4ChipsKaonMinusElasticXS::CalculateCrossSection(G4bool CS, G4int F,
257 G4int I, G4int PDG, G4int tgZ, G4int tgN, G4double pIU)
258{
259 G4double pMom=pIU/GeV; // All calculations are in GeV
260 onlyCS=CS; // Flag to calculate only CS (not Si/Bi)
261 lastLP=std::log(pMom); // Make a logarithm of the momentum for calculation
262 if(F) // This isotope was found in AMDB =>RETRIEVE/UPDATE
263 {
264 if(F<0) // the AMDB must be loded
265 {
266 lastPIN = PIN[I]; // Max log(P) initialised for this table set
267 lastPAR = PAR[I]; // Pointer to the parameter set
268 lastCST = CST[I]; // Pointer to the total sross-section table
269 lastSST = SST[I]; // Pointer to the first squared slope
270 lastS1T = S1T[I]; // Pointer to the first mantissa
271 lastB1T = B1T[I]; // Pointer to the first slope
272 lastS2T = S2T[I]; // Pointer to the second mantissa
273 lastB2T = B2T[I]; // Pointer to the second slope
274 lastS3T = S3T[I]; // Pointer to the third mantissa
275 lastB3T = B3T[I]; // Pointer to the rhird slope
276 lastS4T = S4T[I]; // Pointer to the 4-th mantissa
277 lastB4T = B4T[I]; // Pointer to the 4-th slope
278 }
279 if(lastLP>lastPIN && lastLP<lPMax)
280 {
281 lastPIN=GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);// Can update upper logP-Limit in tabs
282 PIN[I]=lastPIN; // Remember the new P-Limit of the tables
283 }
284 }
285 else // This isotope wasn't initialized => CREATE
286 {
287 lastPAR = new G4double[nPoints]; // Allocate memory for parameters of CS function
288 lastPAR[nLast]=0; // Initialization for VALGRIND
289 lastCST = new G4double[nPoints]; // Allocate memory for Tabulated CS function
290 lastSST = new G4double[nPoints]; // Allocate memory for Tabulated first sqaredSlope
291 lastS1T = new G4double[nPoints]; // Allocate memory for Tabulated first mantissa
292 lastB1T = new G4double[nPoints]; // Allocate memory for Tabulated first slope
293 lastS2T = new G4double[nPoints]; // Allocate memory for Tabulated second mantissa
294 lastB2T = new G4double[nPoints]; // Allocate memory for Tabulated second slope
295 lastS3T = new G4double[nPoints]; // Allocate memory for Tabulated third mantissa
296 lastB3T = new G4double[nPoints]; // Allocate memory for Tabulated third slope
297 lastS4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th mantissa
298 lastB4T = new G4double[nPoints]; // Allocate memory for Tabulated 4-th slope
299 lastPIN = GetPTables(lastLP,lPMin,PDG,tgZ,tgN); // Returns the new P-limit for tables
300 PIN.push_back(lastPIN); // Fill parameters of CS function to AMDB
301 PAR.push_back(lastPAR); // Fill parameters of CS function to AMDB
302 CST.push_back(lastCST); // Fill Tabulated CS function to AMDB
303 SST.push_back(lastSST); // Fill Tabulated first sq.slope to AMDB
304 S1T.push_back(lastS1T); // Fill Tabulated first mantissa to AMDB
305 B1T.push_back(lastB1T); // Fill Tabulated first slope to AMDB
306 S2T.push_back(lastS2T); // Fill Tabulated second mantissa to AMDB
307 B2T.push_back(lastB2T); // Fill Tabulated second slope to AMDB
308 S3T.push_back(lastS3T); // Fill Tabulated third mantissa to AMDB
309 B3T.push_back(lastB3T); // Fill Tabulated third slope to AMDB
310 S4T.push_back(lastS4T); // Fill Tabulated 4-th mantissa to AMDB
311 B4T.push_back(lastB4T); // Fill Tabulated 4-th slope to AMDB
312 } // End of creation/update of the new set of parameters and tables
313 // =----------= NOW Update (if necessary) and Calculate the Cross Section =-----------=
314 if(lastLP>lastPIN && lastLP<lPMax)
315 {
316 lastPIN = GetPTables(lastLP,lastPIN,PDG,tgZ,tgN);
317 }
318 if(!onlyCS) lastTM=GetQ2max(PDG, tgZ, tgN, pMom); // Calculate (-t)_max=Q2_max (GeV2)
319 if(lastLP>lPMin && lastLP<=lastPIN) // Linear fit is made using precalculated tables
320 {
321 if(lastLP==lastPIN)
322 {
323 G4double shift=(lastLP-lPMin)/dlnP+.000001; // Log distance from lPMin
324 G4int blast=static_cast<int>(shift); // this is a bin number of the lower edge (0)
325 if(blast<0 || blast>=nLast) G4cout<<"G4QKMElCS::CCS:b="<<blast<<",n="<<nLast<<G4endl;
326 lastSIG = lastCST[blast];
327 if(!onlyCS) // Skip the differential cross-section parameters
328 {
329 theSS = lastSST[blast];
330 theS1 = lastS1T[blast];
331 theB1 = lastB1T[blast];
332 theS2 = lastS2T[blast];
333 theB2 = lastB2T[blast];
334 theS3 = lastS3T[blast];
335 theB3 = lastB3T[blast];
336 theS4 = lastS4T[blast];
337 theB4 = lastB4T[blast];
338 }
339 }
340 else
341 {
342 G4double shift=(lastLP-lPMin)/dlnP; // a shift from the beginning of the table
343 G4int blast=static_cast<int>(shift); // the lower bin number
344 if(blast<0) blast=0;
345 if(blast>=nLast) blast=nLast-1; // low edge of the last bin
346 shift-=blast; // step inside the unit bin
347 G4int lastL=blast+1; // the upper bin number
348 G4double SIGL=lastCST[blast]; // the basic value of the cross-section
349 lastSIG= SIGL+shift*(lastCST[lastL]-SIGL); // calculated total elastic cross-section
350 if(!onlyCS) // Skip the differential cross-section parameters
351 {
352 G4double SSTL=lastSST[blast]; // the low bin of the first squared slope
353 theSS=SSTL+shift*(lastSST[lastL]-SSTL); // the basic value of the first sq.slope
354 G4double S1TL=lastS1T[blast]; // the low bin of the first mantissa
355 theS1=S1TL+shift*(lastS1T[lastL]-S1TL); // the basic value of the first mantissa
356 G4double B1TL=lastB1T[blast]; // the low bin of the first slope
357 theB1=B1TL+shift*(lastB1T[lastL]-B1TL); // the basic value of the first slope
358 G4double S2TL=lastS2T[blast]; // the low bin of the second mantissa
359 theS2=S2TL+shift*(lastS2T[lastL]-S2TL); // the basic value of the second mantissa
360 G4double B2TL=lastB2T[blast]; // the low bin of the second slope
361 theB2=B2TL+shift*(lastB2T[lastL]-B2TL); // the basic value of the second slope
362 G4double S3TL=lastS3T[blast]; // the low bin of the third mantissa
363 theS3=S3TL+shift*(lastS3T[lastL]-S3TL); // the basic value of the third mantissa
364 G4double B3TL=lastB3T[blast]; // the low bin of the third slope
365 theB3=B3TL+shift*(lastB3T[lastL]-B3TL); // the basic value of the third slope
366 G4double S4TL=lastS4T[blast]; // the low bin of the 4-th mantissa
367 theS4=S4TL+shift*(lastS4T[lastL]-S4TL); // the basic value of the 4-th mantissa
368 G4double B4TL=lastB4T[blast]; // the low bin of the 4-th slope
369 theB4=B4TL+shift*(lastB4T[lastL]-B4TL); // the basic value of the 4-th slope
370 }
371 }
372 }
373 else lastSIG=GetTabValues(lastLP, PDG, tgZ, tgN); // Direct calculation beyond the table
374 if(lastSIG<0.) lastSIG = 0.; // @@ a Warning print can be added
375 return lastSIG;
376}
377
378// It has parameter sets for all tZ/tN/PDG, using them the tables can be created/updated
379G4double G4ChipsKaonMinusElasticXS::GetPTables(G4double LP,G4double ILP, G4int PDG,
380 G4int tgZ, G4int tgN)
381{
382 // @@ At present all nA==pA ---------> Each neucleus can have not more than 51 parameters
383 if(PDG == -321)
384 {
385 // -- Total pp elastic cross section cs & s1/b1 (main), s2/b2 (tail1), s3/b3 (tail2) --
386 //p2=p*p;p3=p2*p;sp=sqrt(p);p2s=p2*sp;lp=log(p);dl1=lp-(3.=par(3));p4=p2*p2; p=|3-mom|
387 //CS=2.865/p2s/(1+.0022/p2s)+(18.9+.6461*dl1*dl1+9./p)/(1.+.425*lp)/(1.+.4276/p4);
388 // par(0) par(7) par(1) par(2) par(4) par(5) par(6)
389 //dl2=lp-5., s1=(74.+3.*dl2*dl2)/(1+3.4/p4/p)+(.2/p2+17.*p)/(p4+.001*sp),
390 // par(8) par(9) par(10) par(11) par(12)par(13) par(14)
391 // b1=8.*p**.055/(1.+3.64/p3); s2=5.e-5+4000./(p4+1500.*p); b2=.46+1.2e6/(p4+3.5e6/sp);
392 // par(15) par(16) par(17) par(18) par(19) par(20) par(21) par(22) par(23)
393 // s3=5.e-5+1.e10/(p4*p4+8.5e8*p2+1.e10); b3=1.1+3.4e6/(p4+6.8e6); ss=0.
394 // par(24) par(25) par(26) par(27) par(28) par(29) par(30) par(31)
395 //
396 if(lastPAR[nLast]!=pwd) // A unique flag to avoid the repeatable definition
397 {
398 if ( tgZ == 1 && tgN == 0 )
399 {
400 for (G4int ip=0; ip<n_kmpel; ip++) lastPAR[ip]=kmp_el[ip]; // PiMinus+P
401 }
402 else
403 {
404 G4double a=tgZ+tgN;
405 G4double sa=std::sqrt(a);
406 G4double ssa=std::sqrt(sa);
407 G4double asa=a*sa;
408 G4double a2=a*a;
409 G4double a3=a2*a;
410 G4double a4=a3*a;
411 G4double a5=a4*a;
412 G4double a6=a4*a2;
413 G4double a7=a6*a;
414 G4double a8=a7*a;
415 G4double a9=a8*a;
416 G4double a10=a5*a5;
417 G4double a12=a6*a6;
418 G4double a14=a7*a7;
419 G4double a16=a8*a8;
420 G4double a17=a16*a;
421 //G4double a20=a16*a4;
422 G4double a32=a16*a16;
423 // Reaction cross-section parameters (kmael_fit.f)
424 lastPAR[0]=.06*asa/(1.+a*(.01+.1/ssa)); // p1
425 lastPAR[1]=.75*asa/(1.+.009*a); // p2
426 lastPAR[2]=.1*a2*ssa/(1.+.0015*a2/ssa); // p3
427 lastPAR[3]=1./(1.+500./a2); // p4
428 lastPAR[4]=4.2; // p5
429 lastPAR[5]=0.; // p6 not used
430 lastPAR[6]=0.; // p7 not used
431 lastPAR[7]=0.; // p8 not used
432 lastPAR[8]=0.; // p9 not used
433 // @@ the differential cross-section is parameterized separately for A>6 & A<7
434 if(a<6.5)
435 {
436 G4double a28=a16*a12;
437 // The main pre-exponent (pel_sg)
438 lastPAR[ 9]=4000*a; // p1
439 lastPAR[10]=1.2e7*a8+380*a17; // p2
440 lastPAR[11]=.7/(1.+4.e-12*a16); // p3
441 lastPAR[12]=2.5/a8/(a4+1.e-16*a32); // p4
442 lastPAR[13]=.28*a; // p5
443 lastPAR[14]=1.2*a2+2.3; // p6
444 lastPAR[15]=3.8/a; // p7
445 // The main slope (pel_sl)
446 lastPAR[16]=.01/(1.+.0024*a5); // p1
447 lastPAR[17]=.2*a; // p2
448 lastPAR[18]=9.e-7/(1.+.035*a5); // p3
449 lastPAR[19]=(42.+2.7e-11*a16)/(1.+.14*a); // p4
450 // The main quadratic (pel_sh)
451 lastPAR[20]=2.25*a3; // p1
452 lastPAR[21]=18.; // p2
453 lastPAR[22]=2.4e-3*a8/(1.+2.6e-4*a7); // p3
454 lastPAR[23]=3.5e-36*a32*a8/(1.+5.e-15*a32/a); // p4
455 // The 1st max pre-exponent (pel_qq)
456 lastPAR[24]=1.e5/(a8+2.5e12/a16); // p1
457 lastPAR[25]=8.e7/(a12+1.e-27*a28*a28); // p2
458 lastPAR[26]=.0006*a3; // p3
459 // The 1st max slope (pel_qs)
460 lastPAR[27]=10.+4.e-8*a12*a; // p1
461 lastPAR[28]=.114; // p2
462 lastPAR[29]=.003; // p3
463 lastPAR[30]=2.e-23; // p4
464 // The effective pre-exponent (pel_ss)
465 lastPAR[31]=1./(1.+.0001*a8); // p1
466 lastPAR[32]=1.5e-4/(1.+5.e-6*a12); // p2
467 lastPAR[33]=.03; // p3
468 // The effective slope (pel_sb)
469 lastPAR[34]=a/2; // p1
470 lastPAR[35]=2.e-7*a4; // p2
471 lastPAR[36]=4.; // p3
472 lastPAR[37]=64./a3; // p4
473 // The gloria pre-exponent (pel_us)
474 lastPAR[38]=1.e8*std::exp(.32*asa); // p1
475 lastPAR[39]=20.*std::exp(.45*asa); // p2
476 lastPAR[40]=7.e3+2.4e6/a5; // p3
477 lastPAR[41]=2.5e5*std::exp(.085*a3); // p4
478 lastPAR[42]=2.5*a; // p5
479 // The gloria slope (pel_ub)
480 lastPAR[43]=920.+.03*a8*a3; // p1
481 lastPAR[44]=93.+.0023*a12; // p2
482 }
483 else
484 {
485 G4double p1a10=2.2e-28*a10;
486 G4double r4a16=6.e14/a16;
487 G4double s4a16=r4a16*r4a16;
488 // a24
489 // a36
490 // The main pre-exponent (peh_sg)
491 lastPAR[ 9]=4.5*std::pow(a,1.15); // p1
492 lastPAR[10]=.06*std::pow(a,.6); // p2
493 lastPAR[11]=.6*a/(1.+2.e15/a16); // p3
494 lastPAR[12]=.17/(a+9.e5/a3+1.5e33/a32); // p4
495 lastPAR[13]=(.001+7.e-11*a5)/(1.+4.4e-11*a5); // p5
496 lastPAR[14]=(p1a10*p1a10+2.e-29)/(1.+2.e-22*a12); // p6
497 // The main slope (peh_sl)
498 lastPAR[15]=400./a12+2.e-22*a9; // p1
499 lastPAR[16]=1.e-32*a12/(1.+5.e22/a14); // p2
500 lastPAR[17]=1000./a2+9.5*sa*ssa; // p3
501 lastPAR[18]=4.e-6*a*asa+1.e11/a16; // p4
502 lastPAR[19]=(120./a+.002*a2)/(1.+2.e14/a16); // p5
503 lastPAR[20]=9.+100./a; // p6
504 // The main quadratic (peh_sh)
505 lastPAR[21]=.002*a3+3.e7/a6; // p1
506 lastPAR[22]=7.e-15*a4*asa; // p2
507 lastPAR[23]=9000./a4; // p3
508 // The 1st max pre-exponent (peh_qq)
509 lastPAR[24]=.0011*asa/(1.+3.e34/a32/a4); // p1
510 lastPAR[25]=1.e-5*a2+2.e14/a16; // p2
511 lastPAR[26]=1.2e-11*a2/(1.+1.5e19/a12); // p3
512 lastPAR[27]=.016*asa/(1.+5.e16/a16); // p4
513 // The 1st max slope (peh_qs)
514 lastPAR[28]=.002*a4/(1.+7.e7/std::pow(a-6.83,14)); // p1
515 lastPAR[29]=2.e6/a6+7.2/std::pow(a,.11); // p2
516 lastPAR[30]=11.*a3/(1.+7.e23/a16/a8); // p3
517 lastPAR[31]=100./asa; // p4
518 // The 2nd max pre-exponent (peh_ss)
519 lastPAR[32]=(.1+4.4e-5*a2)/(1.+5.e5/a4); // p1
520 lastPAR[33]=3.5e-4*a2/(1.+1.e8/a8); // p2
521 lastPAR[34]=1.3+3.e5/a4; // p3
522 lastPAR[35]=500./(a2+50.)+3; // p4
523 lastPAR[36]=1.e-9/a+s4a16*s4a16; // p5
524 // The 2nd max slope (peh_sb)
525 lastPAR[37]=.4*asa+3.e-9*a6; // p1
526 lastPAR[38]=.0005*a5; // p2
527 lastPAR[39]=.002*a5; // p3
528 lastPAR[40]=10.; // p4
529 // The effective pre-exponent (peh_us)
530 lastPAR[41]=.05+.005*a; // p1
531 lastPAR[42]=7.e-8/sa; // p2
532 lastPAR[43]=.8*sa; // p3
533 lastPAR[44]=.02*sa; // p4
534 lastPAR[45]=1.e8/a3; // p5
535 lastPAR[46]=3.e32/(a32+1.e32); // p6
536 // The effective slope (peh_ub)
537 lastPAR[47]=24.; // p1
538 lastPAR[48]=20./sa; // p2
539 lastPAR[49]=7.e3*a/(sa+1.); // p3
540 lastPAR[50]=900.*sa/(1.+500./a3); // p4
541 }
542 // Parameter for lowEnergyNeutrons
543 lastPAR[51]=1.e15+2.e27/a4/(1.+2.e-18*a16);
544 }
545 lastPAR[nLast]=pwd;
546 // and initialize the zero element of the table
547 G4double lp=lPMin; // ln(momentum)
548 G4bool memCS=onlyCS; // ??
549 onlyCS=false;
550 lastCST[0]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables
551 onlyCS=memCS;
552 lastSST[0]=theSS;
553 lastS1T[0]=theS1;
554 lastB1T[0]=theB1;
555 lastS2T[0]=theS2;
556 lastB2T[0]=theB2;
557 lastS3T[0]=theS3;
558 lastB3T[0]=theB3;
559 lastS4T[0]=theS4;
560 lastB4T[0]=theB4;
561 }
562 if(LP>ILP)
563 {
564 G4int ini = static_cast<int>((ILP-lPMin+.000001)/dlnP)+1; // already inited till this
565 if(ini<0) ini=0;
566 if(ini<nPoints)
567 {
568 G4int fin = static_cast<int>((LP-lPMin)/dlnP)+1; // final bin of initialization
569 if(fin>=nPoints) fin=nLast; // Limit of the tabular initialization
570 if(fin>=ini)
571 {
572 G4double lp=0.;
573 for(G4int ip=ini; ip<=fin; ip++) // Calculate tabular CS,S1,B1,S2,B2,S3,B3
574 {
575 lp=lPMin+ip*dlnP; // ln(momentum)
576 G4bool memCS=onlyCS;
577 onlyCS=false;
578 lastCST[ip]=GetTabValues(lp, PDG, tgZ, tgN); // Calculate AMDB tables (ret CS)
579 onlyCS=memCS;
580 lastSST[ip]=theSS;
581 lastS1T[ip]=theS1;
582 lastB1T[ip]=theB1;
583 lastS2T[ip]=theS2;
584 lastB2T[ip]=theB2;
585 lastS3T[ip]=theS3;
586 lastB3T[ip]=theB3;
587 lastS4T[ip]=theS4;
588 lastB4T[ip]=theB4;
589 }
590 return lp;
591 }
592 else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
593 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<" > fin="<<fin<<", LP="<<LP
594 <<" > ILP="<<ILP<<" nothing is done!"<<G4endl;
595 }
596 else G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG
597 <<", Z="<<tgZ<<", N="<<tgN<<", i="<<ini<<">= max="<<nPoints<<", LP="<<LP
598 <<" > ILP="<<ILP<<", lPMax="<<lPMax<<" nothing is done!"<<G4endl;
599 }
600 }
601 else
602 {
603 // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetPTables: PDG="<<PDG<<", Z="<<tgZ
604 // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
605 // throw G4QException("G4ChipsKaonMinusElasticXS::GetPTables:onlyK-'s implemented");
607 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
608 << ", while it is defined only for PDG=-321 (K-) " << G4endl;
609 G4Exception("G4ChipsKaonMinusElasticXS::GetPTables()", "HAD_CHPS_0000",
610 FatalException, ed);
611 }
612 return ILP;
613}
614
615// Returns Q2=-t in independent units (MeV^2) (all internal calculations are in GeV)
617{
618 if(PDG==310 || PDG==130) PDG=-321;
619 if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetET:PDG="<<PDG<<G4endl;
620 if(onlyCS) G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetExT: onlyCS=1"<<G4endl;
621 if(lastLP<-4.3) return lastTM*GeVSQ*G4UniformRand();// S-wave for p<14 MeV/c (kinE<.1MeV)
622 G4double q2=0.;
623 if(tgZ==1 && tgN==0) // ===> p+p=p+p
624 {
625 G4double E1=lastTM*theB1;
626 G4double R1=(1.-std::exp(-E1));
627 G4double E2=lastTM*theB2;
628 G4double R2=(1.-std::exp(-E2*E2*E2));
629 G4double E3=lastTM*theB3;
630 G4double R3=(1.-std::exp(-E3));
631 G4double I1=R1*theS1/theB1;
632 G4double I2=R2*theS2;
633 G4double I3=R3*theS3;
634 G4double I12=I1+I2;
635 G4double rand=(I12+I3)*G4UniformRand();
636 if (rand<I1 )
637 {
638 G4double ran=R1*G4UniformRand();
639 if(ran>1.) ran=1.;
640 q2=-std::log(1.-ran)/theB1;
641 }
642 else if(rand<I12)
643 {
644 G4double ran=R2*G4UniformRand();
645 if(ran>1.) ran=1.;
646 q2=-std::log(1.-ran);
647 if(q2<0.) q2=0.;
648 q2=std::pow(q2,third)/theB2;
649 }
650 else
651 {
652 G4double ran=R3*G4UniformRand();
653 if(ran>1.) ran=1.;
654 q2=-std::log(1.-ran)/theB3;
655 }
656 }
657 else
658 {
659 G4double a=tgZ+tgN;
660 G4double E1=lastTM*(theB1+lastTM*theSS);
661 G4double R1=(1.-std::exp(-E1));
662 G4double tss=theSS+theSS; // for future solution of quadratic equation (imediate check)
663 G4double tm2=lastTM*lastTM;
664 G4double E2=lastTM*tm2*theB2; // power 3 for lowA, 5 for HighA (1st)
665 if(a>6.5)E2*=tm2; // for heavy nuclei
666 G4double R2=(1.-std::exp(-E2));
667 G4double E3=lastTM*theB3;
668 if(a>6.5)E3*=tm2*tm2*tm2; // power 1 for lowA, 7 (2nd) for HighA
669 G4double R3=(1.-std::exp(-E3));
670 G4double E4=lastTM*theB4;
671 G4double R4=(1.-std::exp(-E4));
672 G4double I1=R1*theS1;
673 G4double I2=R2*theS2;
674 G4double I3=R3*theS3;
675 G4double I4=R4*theS4;
676 G4double I12=I1+I2;
677 G4double I13=I12+I3;
678 G4double rand=(I13+I4)*G4UniformRand();
679 if(rand<I1)
680 {
681 G4double ran=R1*G4UniformRand();
682 if(ran>1.) ran=1.;
683 q2=-std::log(1.-ran)/theB1;
684 if(std::fabs(tss)>1.e-7) q2=(std::sqrt(theB1*(theB1+(tss+tss)*q2))-theB1)/tss;
685 }
686 else if(rand<I12)
687 {
688 G4double ran=R2*G4UniformRand();
689 if(ran>1.) ran=1.;
690 q2=-std::log(1.-ran)/theB2;
691 if(q2<0.) q2=0.;
692 if(a<6.5) q2=std::pow(q2,third);
693 else q2=std::pow(q2,fifth);
694 }
695 else if(rand<I13)
696 {
697 G4double ran=R3*G4UniformRand();
698 if(ran>1.) ran=1.;
699 q2=-std::log(1.-ran)/theB3;
700 if(q2<0.) q2=0.;
701 if(a>6.5) q2=std::pow(q2,sevth);
702 }
703 else
704 {
705 G4double ran=R4*G4UniformRand();
706 if(ran>1.) ran=1.;
707 q2=-std::log(1.-ran)/theB4;
708 if(a<6.5) q2=lastTM-q2; // u reduced for lightA (starts from 0)
709 }
710 }
711 if(q2<0.) q2=0.;
712 if(!(q2>=-1.||q2<=1.)) G4cout<<"*NAN*G4QKaonMinusElasticCS::GetExchT: -t="<<q2<<G4endl;
713 if(q2>lastTM)
714 {
715 q2=lastTM;
716 }
717 return q2*GeVSQ;
718}
719
720// Returns B in independent units (MeV^-2) (all internal calculations are in GeV) see ExT
721G4double G4ChipsKaonMinusElasticXS::GetSlope(G4int tgZ, G4int tgN, G4int PDG)
722{
723 if(onlyCS)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetSl:onlCS=true"<<G4endl;
724 if(lastLP<-4.3) return 0.; // S-wave for p<14 MeV/c (kinE<.1MeV)
725 if(PDG != -321)
726 {
727 // G4cout<<"*Error*G4ChipsKaonMinusElasticXS::GetSlope: PDG="<<PDG<<", Z="<<tgZ
728 // <<", N="<<tgN<<", while it is defined only for PDG=-321"<<G4endl;
729 // throw G4QException("G4ChipsKaonMinusElasticXS::GetSlope:Only K- is implemented");
731 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
732 << ", while it is defined only for PDG=-321 (K-)" << G4endl;
733 }
734 if(theB1<0.) theB1=0.;
735 if(!(theB1>=-1.||theB1<=1.))G4cout<<"*NAN*G4QKaonMinusElCS::GetSlope:B1="<<theB1<<G4endl;
736 return theB1/GeVSQ;
737}
738
739// Returns half max(Q2=-t) in independent units (MeV^2)
740G4double G4ChipsKaonMinusElasticXS::GetHMaxT()
741{
742 return lastTM*HGeVSQ;
743}
744
745// lastLP is used, so calculating tables, one need to remember and then recover lastLP
746G4double G4ChipsKaonMinusElasticXS::GetTabValues(G4double lp, G4int PDG, G4int tgZ,
747 G4int tgN)
748{
749 if(PDG!=-321)G4cout<<"*Warning*G4ChipsKaonMinusElasticXS::GetTV:PDG="<<PDG<<G4endl;
750
751 //AR-24Apr2018 Switch to allow transuranic elements
752 const G4bool isHeavyElementAllowed = true;
753 if(tgZ<0 || ( !isHeavyElementAllowed && tgZ>92))
754 {
755 G4cout<<"*Warning*G4QKaonMinusElasticCS::GetTabV:(1-92)NoIsotopes for Z="<<tgZ<<G4endl;
756 return 0.;
757 }
758 G4int iZ=tgZ-1; // Z index
759 if(iZ<0)
760 {
761 iZ=0; // conversion of the neutron target to the proton target
762 tgZ=1;
763 tgN=0;
764 }
765 G4double p=std::exp(lp); // momentum
766 G4double sp=std::sqrt(p); // sqrt(p)
767 G4double psp=p*sp; // p*sqrt(p)
768 G4double p2=p*p;
769 G4double p3=p2*p;
770 G4double p4=p3*p;
771 if ( tgZ == 1 && tgN == 0 ) // KaonMinus+P
772 {
773 G4double dl2=lp-lastPAR[12];
774 theSS=lastPAR[35];
775 theS1=(lastPAR[13]+lastPAR[14]*dl2*dl2)/(1.+lastPAR[15]/p4/p)+
776 (lastPAR[16]/p2+lastPAR[17]*p)/(p4+lastPAR[18]*sp);
777 theB1=lastPAR[19]*std::pow(p,lastPAR[20])/(1.+lastPAR[21]/p3);
778 theS2=lastPAR[22]+lastPAR[23]/(p4+lastPAR[24]*p);
779 theB2=lastPAR[25]+lastPAR[26]/(p4+lastPAR[27]/sp);
780 theS3=lastPAR[28]+lastPAR[29]/(p4*p4+lastPAR[30]*p2+lastPAR[31]);
781 theB3=lastPAR[32]+lastPAR[33]/(p4+lastPAR[34]);
782 theS4=0.;
783 theB4=0.;
784 // Returns the total elastic pim-p cross-section (to avoid spoiling lastSIG)
785 G4double dp=lp-lastPAR[2];
786 return lastPAR[0]/psp+(lastPAR[1]*dp*dp+lastPAR[3])/(1.-lastPAR[4]/sp+lastPAR[5]/p4)+
787 lastPAR[6]/(sqr(p-lastPAR[7])+lastPAR[8])+lastPAR[9]/(sqr(p-lastPAR[10])+lastPAR[11]);
788 }
789 else
790 {
791 G4double p5=p4*p;
792 G4double p6=p5*p;
793 G4double p8=p6*p2;
794 G4double p10=p8*p2;
795 G4double p12=p10*p2;
796 G4double p16=p8*p8;
797 //G4double p24=p16*p8;
798 G4double dl=lp-5.;
799 G4double a=tgZ+tgN;
800 G4double pah=std::pow(p,a/2);
801 G4double pa=pah*pah;
802 G4double pa2=pa*pa;
803 if(a<6.5)
804 {
805 theS1=lastPAR[9]/(1.+lastPAR[10]*p4*pa)+lastPAR[11]/(p4+lastPAR[12]*p4/pa2)+
806 (lastPAR[13]*dl*dl+lastPAR[14])/(1.+lastPAR[15]/p2);
807 theB1=(lastPAR[16]+lastPAR[17]*p2)/(p4+lastPAR[18]/pah)+lastPAR[19];
808 theSS=lastPAR[20]/(1.+lastPAR[21]/p2)+lastPAR[22]/(p6/pa+lastPAR[23]/p16);
809 theS2=lastPAR[24]/(pa/p2+lastPAR[25]/p4)+lastPAR[26];
810 theB2=lastPAR[27]*std::pow(p,lastPAR[28])+lastPAR[29]/(p8+lastPAR[30]/p16);
811 theS3=lastPAR[31]/(pa*p+lastPAR[32]/pa)+lastPAR[33];
812 theB3=lastPAR[34]/(p3+lastPAR[35]/p6)+lastPAR[36]/(1.+lastPAR[37]/p2);
813 theS4=p2*(pah*lastPAR[38]*std::exp(-pah*lastPAR[39])+
814 lastPAR[40]/(1.+lastPAR[41]*std::pow(p,lastPAR[42])));
815 theB4=lastPAR[43]*pa/p2/(1.+pa*lastPAR[44]);
816 }
817 else
818 {
819 theS1=lastPAR[9]/(1.+lastPAR[10]/p4)+lastPAR[11]/(p4+lastPAR[12]/p2)+
820 lastPAR[13]/(p5+lastPAR[14]/p16);
821 theB1=(lastPAR[15]/p8+lastPAR[19])/(p+lastPAR[16]/std::pow(p,lastPAR[20]))+
822 lastPAR[17]/(1.+lastPAR[18]/p4);
823 theSS=lastPAR[21]/(p4/std::pow(p,lastPAR[23])+lastPAR[22]/p4);
824 theS2=lastPAR[24]/p4/(std::pow(p,lastPAR[25])+lastPAR[26]/p12)+lastPAR[27];
825 theB2=lastPAR[28]/std::pow(p,lastPAR[29])+lastPAR[30]/std::pow(p,lastPAR[31]);
826 theS3=lastPAR[32]/std::pow(p,lastPAR[35])/(1.+lastPAR[36]/p12)+
827 lastPAR[33]/(1.+lastPAR[34]/p6);
828 theB3=lastPAR[37]/p8+lastPAR[38]/p2+lastPAR[39]/(1.+lastPAR[40]/p8);
829 theS4=(lastPAR[41]/p4+lastPAR[46]/p)/(1.+lastPAR[42]/p10)+
830 (lastPAR[43]+lastPAR[44]*dl*dl)/(1.+lastPAR[45]/p12);
831 theB4=lastPAR[47]/(1.+lastPAR[48]/p)+lastPAR[49]*p4/(1.+lastPAR[50]*p5);
832 }
833 // Returns the total elastic (n/p)A cross-section (to avoid spoiling lastSIG)
834 G4double dlp=lp-lastPAR[4]; // ax
835 // p1 p2 p3 p4
836 return (lastPAR[0]*dlp*dlp+lastPAR[1]+lastPAR[2]/p3)/(1.+lastPAR[3]/p2/sp);
837 }
838 return 0.;
839} // End of GetTableValues
840
841// Returns max -t=Q2 (GeV^2) for the momentum pP(GeV) and the target nucleus (tgN,tgZ)
842G4double G4ChipsKaonMinusElasticXS::GetQ2max(G4int PDG, G4int tgZ, G4int tgN,
843 G4double pP)
844{
845 G4double pP2=pP*pP; // squared momentum of the projectile
846 if(tgZ || tgN>-1) // ---> pipA
847 {
848 G4double mt=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(tgZ,tgZ+tgN,0)->GetPDGMass()*.001; // Target mass in GeV
849
850 G4double dmt=mt+mt;
851 G4double mds=dmt*std::sqrt(pP2+mK2)+mK2+mt*mt; // Mondelstam mds
852 return dmt*dmt*pP2/mds;
853 }
854 else
855 {
857 ed << "PDG = " << PDG << ", Z = " << tgZ << ", N = " << tgN
858 << ", while it is defined only for p projectiles & Z_target>0" << G4endl;
859 G4Exception("G4ChipsKaonMinusElasticXS::GetQ2max()", "HAD_CHPS_0000",
860 FatalException, ed);
861 return 0;
862 }
863}
#define G4_DECLARE_XS_FACTORY(cross_section)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
#define G4MUTEX_INITIALIZER
std::mutex G4Mutex
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
virtual G4double GetChipsCrossSection(G4double momentum, G4int Z, G4int N, G4int pdg)
virtual void CrossSectionDescription(std::ostream &) const
virtual G4double GetIsoCrossSection(const G4DynamicParticle *, G4int tgZ, G4int A, const G4Isotope *iso=0, const G4Element *elm=0, const G4Material *mat=0)
G4double GetExchangeT(G4int tZ, G4int tN, G4int pPDG)
virtual G4bool IsIsoApplicable(const G4DynamicParticle *Pt, G4int Z, G4int A, const G4Element *elm, const G4Material *mat)
G4double GetTotalMomentum() const
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4KaonMinus * KaonMinus()
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
T sqr(const T &x)
Definition templates.hh:128