Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLIFunction1D.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
38/** \file G4INCLIFunction1D.cc
39 * \brief Functor for 1-dimensional mathematical functions
40 *
41 * \date 16 July 2011
42 * \author Davide Mancusi
43 */
44
45#include <algorithm>
46#include <cmath>
47#include <cstdlib>
48#include "G4INCLIFunction1D.hh"
49#include "G4INCLLogger.hh"
51
52namespace G4INCL {
53
54 const G4double IFunction1D::integrationCoefficients[] = {
55 2.*95.0/288.0,
56 317.0/240.0,
57 23.0/30.0,
58 793.0/720.0,
59 157.0/160.0,
60 157.0/160.0,
61 793.0/720.0,
62 23.0/30.0,
63 317.0/240.0,
64 };
65
66 G4double IFunction1D::integrate(const G4double x0, const G4double x1, const G4double step) const {
67 G4double xi = std::max(x0, xMin);
68 G4double xa = std::min(x1, xMax);
69 G4double sign;
70
71 if(x1 <= x0) {
72 sign = -1.0;
73 std::swap(xi, xa);
74 } else
75 sign = 1.0;
76
77 const G4double interval = xa - xi;
78
79 G4int nIntervals;
80 if(step<0.) {
81 nIntervals = 45;
82 } else {
83 nIntervals = G4int(interval/step);
84
85 // Round up nIntervals to the closest multiple of 9
86 G4int remainder = nIntervals % 9;
87 if (remainder != 0)
88 nIntervals += 9 - remainder;
89
90 nIntervals = std::max(nIntervals, 9);
91 }
92
93 const G4double dx = interval/nIntervals;
94 G4double result = (operator()(xi) + operator()(xa)) * integrationCoefficients[0]/2;
95 for(G4int j = 1; j<nIntervals; ++j) {
96 const G4double x = xi + interval*G4double(j)/G4double(nIntervals);
97 const unsigned index = j%9;
98 result += operator()(x) * integrationCoefficients[index];
99 }
100
101 return result*dx*sign;
102
103 }
104
106 class Primitive : public IFunction1D {
107 public:
108 Primitive(IFunction1D const * const f) :
110 theFunction(f)
111 {}
112
113 G4double operator()(const G4double x) const {
114 return theFunction->integrate(xMin,x);
115 }
116 private:
117 IFunction1D const * const theFunction;
118 } *thePrimitive = new Primitive(this);
119
120 return thePrimitive;
121 }
122
124 class InverseCDF : public IFunction1D {
125 public:
126 InverseCDF(IFunction1D const * const f, ManipulatorFunc fw) :
128 theFunction(f),
129 normalisation(1./theFunction->integrate(xMin,xMax)),
130 fWrap(fw)
131 {}
132
133 G4double operator()(const G4double x) const {
134 if(fWrap)
135 return fWrap(std::min(1., normalisation * theFunction->integrate(xMin,x)));
136 else
137 return std::min(1., normalisation * theFunction->integrate(xMin,x));
138 }
139 private:
140 IFunction1D const * const theFunction;
141 const G4double normalisation;
142 ManipulatorFunc fWrap;
143 } *theInverseCDF = new InverseCDF(this, fWrap);
144
145 InterpolationTable *theTable = new InvFInterpolationTable(*theInverseCDF, nNodes);
146 delete theInverseCDF;
147 return theTable;
148 }
149}
150
Functor for 1-dimensional mathematical functions.
Simple interpolation table for the inverse of a IFunction1D functor.
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
virtual G4double operator()(const G4double x) const =0
Compute the value of the function.
virtual G4double getXMaximum() const
Return the maximum allowed value of the independent variable.
G4double xMin
Minimum value of the independent variable.
IFunction1D * primitive() const
Return a pointer to the (numerical) primitive to this function.
G4double xMax
Maximum value of the independent variable.
virtual G4double integrate(const G4double x0, const G4double x1, const G4double step=-1.) const
Integrate the function between two values.
G4double(*const) ManipulatorFunc(const G4double)
Typedef to simplify the syntax of inverseCDFTable.
InterpolationTable * inverseCDFTable(ManipulatorFunc fWrap=0, const G4int nNodes=60) const
Return a pointer to the inverse of the CDF of this function.
virtual G4double getXMinimum() const
Return the minimum allowed value of the independent variable.
Class for interpolating the of a 1-dimensional function.
Class for interpolating the inverse of a 1-dimensional function.