Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNAMillerGreenExcitationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4SystemOfUnits.hh"
32#include "G4Exp.hh"
33#include "G4Pow.hh"
34#include "G4Alpha.hh"
35
36static G4Pow * gpow = G4Pow::GetInstance();
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
44 const G4String& nam)
45:G4VEmModel(nam)
46{
47 fpMolWaterDensity = nullptr;
48
49 nLevels=0;
50 kineticEnergyCorrection[0]=0.;
51 kineticEnergyCorrection[1]=0.;
52 kineticEnergyCorrection[2]=0.;
53 kineticEnergyCorrection[3]=0.;
54
55 verboseLevel= 0;
56 // Verbosity scale:
57 // 0 = nothing
58 // 1 = warning for energy non-conservation
59 // 2 = details of energy budget
60 // 3 = calculation of cross sections, file openings, sampling of atoms
61 // 4 = entering in methods
62
63 if( verboseLevel>0 )
64 {
65 G4cout << "Miller & Green excitation model is constructed " << G4endl;
66 }
68
69 // Selection of stationary mode
70
71 statCode = false;
72}
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
75
77= default;
78
79//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
80
82 const G4DataVector& /*cuts*/)
83{
84
85 if (verboseLevel > 3)
86 G4cout << "Calling G4DNAMillerGreenExcitationModel::Initialise()" << G4endl;
87
88 // Energy limits
89
92 protonDef = G4Proton::ProtonDefinition();
93 hydrogenDef = instance->GetIon("hydrogen");
94 alphaPlusPlusDef = G4Alpha::Alpha();
95 alphaPlusDef = instance->GetIon("alpha+");
96 heliumDef = instance->GetIon("helium");
97
98 G4String proton;
99 G4String hydrogen;
100 G4String alphaPlusPlus;
101 G4String alphaPlus;
102 G4String helium;
103
104 // LIMITS AND CONSTANTS
105
106 proton = protonDef->GetParticleName();
107 lowEnergyLimit[proton] = 10. * eV;
108 highEnergyLimit[proton] = 500. * keV;
109
110 kineticEnergyCorrection[0] = 1.;
111 slaterEffectiveCharge[0][0] = 0.;
112 slaterEffectiveCharge[1][0] = 0.;
113 slaterEffectiveCharge[2][0] = 0.;
114 sCoefficient[0][0] = 0.;
115 sCoefficient[1][0] = 0.;
116 sCoefficient[2][0] = 0.;
117
118 hydrogen = hydrogenDef->GetParticleName();
119 lowEnergyLimit[hydrogen] = 10. * eV;
120 highEnergyLimit[hydrogen] = 500. * keV;
121
122 kineticEnergyCorrection[0] = 1.;
123 slaterEffectiveCharge[0][0] = 0.;
124 slaterEffectiveCharge[1][0] = 0.;
125 slaterEffectiveCharge[2][0] = 0.;
126 sCoefficient[0][0] = 0.;
127 sCoefficient[1][0] = 0.;
128 sCoefficient[2][0] = 0.;
129
130 alphaPlusPlus = alphaPlusPlusDef->GetParticleName();
131 lowEnergyLimit[alphaPlusPlus] = 1. * keV;
132 highEnergyLimit[alphaPlusPlus] = 400. * MeV;
133
134 kineticEnergyCorrection[1] = 0.9382723/3.727417;
135 slaterEffectiveCharge[0][1]=0.;
136 slaterEffectiveCharge[1][1]=0.;
137 slaterEffectiveCharge[2][1]=0.;
138 sCoefficient[0][1]=0.;
139 sCoefficient[1][1]=0.;
140 sCoefficient[2][1]=0.;
141
142 alphaPlus = alphaPlusDef->GetParticleName();
143 lowEnergyLimit[alphaPlus] = 1. * keV;
144 highEnergyLimit[alphaPlus] = 400. * MeV;
145
146 kineticEnergyCorrection[2] = 0.9382723/3.727417;
147 slaterEffectiveCharge[0][2]=2.0;
148
149 // Following values provided by M. Dingfelder
150 slaterEffectiveCharge[1][2]=2.00;
151 slaterEffectiveCharge[2][2]=2.00;
152 //
153 sCoefficient[0][2]=0.7;
154 sCoefficient[1][2]=0.15;
155 sCoefficient[2][2]=0.15;
156
157 helium = heliumDef->GetParticleName();
158 lowEnergyLimit[helium] = 1. * keV;
159 highEnergyLimit[helium] = 400. * MeV;
160
161 kineticEnergyCorrection[3] = 0.9382723/3.727417;
162 slaterEffectiveCharge[0][3]=1.7;
163 slaterEffectiveCharge[1][3]=1.15;
164 slaterEffectiveCharge[2][3]=1.15;
165 sCoefficient[0][3]=0.5;
166 sCoefficient[1][3]=0.25;
167 sCoefficient[2][3]=0.25;
168
169 //
170
171 if (particle==protonDef)
172 {
173 SetLowEnergyLimit(lowEnergyLimit[proton]);
174 SetHighEnergyLimit(highEnergyLimit[proton]);
175 }
176
177 if (particle==hydrogenDef)
178 {
179 SetLowEnergyLimit(lowEnergyLimit[hydrogen]);
180 SetHighEnergyLimit(highEnergyLimit[hydrogen]);
181 }
182
183 if (particle==alphaPlusPlusDef)
184 {
185 SetLowEnergyLimit(lowEnergyLimit[alphaPlusPlus]);
186 SetHighEnergyLimit(highEnergyLimit[alphaPlusPlus]);
187 }
188
189 if (particle==alphaPlusDef)
190 {
191 SetLowEnergyLimit(lowEnergyLimit[alphaPlus]);
192 SetHighEnergyLimit(highEnergyLimit[alphaPlus]);
193 }
194
195 if (particle==heliumDef)
196 {
197 SetLowEnergyLimit(lowEnergyLimit[helium]);
198 SetHighEnergyLimit(highEnergyLimit[helium]);
199 }
200
201 //
202
203 nLevels = waterExcitation.NumberOfLevels();
204
205 //
206 if( verboseLevel>0 )
207 {
208 G4cout << "Miller & Green excitation model is initialized " << G4endl
209 << "Energy range: "
210 << LowEnergyLimit() / eV << " eV - "
211 << HighEnergyLimit() / keV << " keV for "
212 << particle->GetParticleName()
213 << G4endl;
214 }
215
216 // Initialize water density pointer
218
219 if (isInitialised) { return; }
221 isInitialised = true;
222
223}
224
225//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
226
228 const G4ParticleDefinition* particleDefinition,
229 G4double k,
230 G4double,
231 G4double)
232{
233 if (verboseLevel > 3)
234 G4cout << "Calling CrossSectionPerVolume() of G4DNAMillerGreenExcitationModel" << G4endl;
235
236 // Calculate total cross section for model
237
238 if (
239 particleDefinition != protonDef
240 &&
241 particleDefinition != hydrogenDef
242 &&
243 particleDefinition != alphaPlusPlusDef
244 &&
245 particleDefinition != alphaPlusDef
246 &&
247 particleDefinition != heliumDef
248 )
249
250 return 0;
251
252 G4double lowLim = 0;
253 G4double highLim = 0;
254 G4double crossSection = 0.;
255
256 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
257
258 const G4String& particleName = particleDefinition->GetParticleName();
259
260 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
261 pos1 = lowEnergyLimit.find(particleName);
262
263 if (pos1 != lowEnergyLimit.end())
264 {
265 lowLim = pos1->second;
266 }
267
268 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
269 pos2 = highEnergyLimit.find(particleName);
270
271 if (pos2 != highEnergyLimit.end())
272 {
273 highLim = pos2->second;
274 }
275
276 if (k >= lowLim && k <= highLim)
277 {
278 crossSection = Sum(k,particleDefinition);
279
280 // add ONE or TWO electron-water excitation for alpha+ and helium
281 /*
282 if ( particleDefinition == alphaPlusDef
283 ||
284 particleDefinition == heliumDef
285 )
286 {
287
288 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
289 excitationXS->Initialise(G4Electron::ElectronDefinition());
290
291 G4double sigmaExcitation=0;
292 G4double tmp =0.;
293
294 if (k*0.511/3728 > 8.23*eV && k*0.511/3728 < 10*MeV ) sigmaExcitation =
295 excitationXS->CrossSectionPerVolume(material,G4Electron::ElectronDefinition(),k*0.511/3728,tmp,tmp)
296 /material->GetAtomicNumDensityVector()[1];
297
298 if ( particleDefinition == alphaPlusDef )
299 crossSection = crossSection + sigmaExcitation ;
300
301 if ( particleDefinition == heliumDef )
302 crossSection = crossSection + 2*sigmaExcitation ;
303
304 delete excitationXS;
305
306 // Alternative excitation model
307
308 G4DNABornExcitationModel * excitationXS = new G4DNABornExcitationModel();
309 excitationXS->Initialise(G4Electron::ElectronDefinition());
310
311 G4double sigmaExcitation=0;
312 G4double tmp=0;
313
314 if (k*0.511/3728 > 9*eV && k*0.511/3728 < 1*MeV ) sigmaExcitation =
315 excitationXS->CrossSectionPerVolume(material,G4Electron::ElectronDefinition(),k*0.511/3728,tmp,tmp)
316 /material->GetAtomicNumDensityVector()[1];
317
318 if ( particleDefinition == alphaPlusDef )
319 crossSection = crossSection + sigmaExcitation ;
320
321 if ( particleDefinition == heliumDef )
322 crossSection = crossSection + 2*sigmaExcitation ;
323
324 delete excitationXS;
325
326 }
327 */
328
329 }
330
331 if (verboseLevel > 2)
332 {
333 G4cout << "__________________________________" << G4endl;
334 G4cout << "G4DNAMillerGreenExcitationModel - XS INFO START" << G4endl;
335 G4cout << "Kinetic energy(eV)=" << k/eV << " particle : " << particleDefinition->GetParticleName() << G4endl;
336 G4cout << "Cross section per water molecule (cm^2)=" << crossSection/cm/cm << G4endl;
337 G4cout << "Cross section per water molecule (cm^-1)=" << crossSection*waterDensity/(1./cm) << G4endl;
338 // G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*material->GetAtomicNumDensityVector()[1]/(1./cm) << G4endl;
339 G4cout << "G4DNAMillerGreenExcitationModel - XS INFO END" << G4endl;
340 }
341
342 return crossSection*waterDensity;
343}
344
345//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346
347void G4DNAMillerGreenExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,
348 const G4MaterialCutsCouple* /*couple*/,
349 const G4DynamicParticle* aDynamicParticle,
350 G4double,
351 G4double)
352{
353
354 if (verboseLevel > 3)
355 G4cout << "Calling SampleSecondaries() of G4DNAMillerGreenExcitationModel" << G4endl;
356
357 G4double particleEnergy0 = aDynamicParticle->GetKineticEnergy();
358
359 G4int level = RandomSelect(particleEnergy0,aDynamicParticle->GetDefinition());
360
361 // Dingfelder's excitation levels
362 const G4double excitation[]={ 8.17*eV, 10.13*eV, 11.31*eV, 12.91*eV, 14.50*eV};
363 G4double excitationEnergy = excitation[level];
364
365 G4double newEnergy = 0.;
366
367 if (!statCode) newEnergy = particleEnergy0 - excitationEnergy;
368
369 else newEnergy = particleEnergy0;
370
371 if (newEnergy>0)
372 {
376
377 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
379 level, theIncomingTrack);
380
381 }
382
383}
384
385//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
386
388 G4int level,
389 const G4ParticleDefinition* particleDefinition,
390 G4double kineticEnergy)
391{
392 return PartialCrossSection(kineticEnergy, level, particleDefinition);
393}
394
395//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
396
397G4double G4DNAMillerGreenExcitationModel::PartialCrossSection(G4double k, G4int excitationLevel,
398 const G4ParticleDefinition* particleDefinition)
399{
400 // ( ( z * aj ) ^ omegaj ) * ( t - ej ) ^ nu
401 // sigma(t) = zEff^2 * sigma0 * --------------------------------------------
402 // jj ^ ( omegaj + nu ) + t ^ ( omegaj + nu )
403 //
404 // where t is the kinetic energy corrected by Helium mass over proton mass for Helium ions
405 //
406 // zEff is:
407 // 1 for protons
408 // 2 for alpha++
409 // and 2 - c1 S_1s - c2 S_2s - c3 S_2p for alpha+ and He
410 //
411 // Dingfelder et al., RPC 59, 255-275, 2000 from Miller and Green (1973)
412 // Formula (34) and Table 2
413
414 const G4double sigma0(1.E+8 * barn);
415 const G4double nu(1.);
416 const G4double aj[]={876.*eV, 2084.* eV, 1373.*eV, 692.*eV, 900.*eV};
417 const G4double jj[]={19820.*eV, 23490.*eV, 27770.*eV, 30830.*eV, 33080.*eV};
418 const G4double omegaj[]={0.85, 0.88, 0.88, 0.78, 0.78};
419
420 // Dingfelder's excitation levels
421 const G4double Eliq[5]={ 8.17*eV, 10.13*eV, 11.31*eV, 12.91*eV, 14.50*eV};
422
423 G4int particleTypeIndex = 0;
424
425 if (particleDefinition == protonDef) particleTypeIndex=0;
426 if (particleDefinition == hydrogenDef) particleTypeIndex=0;
427 if (particleDefinition == alphaPlusPlusDef) particleTypeIndex=1;
428 if (particleDefinition == alphaPlusDef) particleTypeIndex=2;
429 if (particleDefinition == heliumDef) particleTypeIndex=3;
430
431 G4double tCorrected;
432 tCorrected = k * kineticEnergyCorrection[particleTypeIndex];
433
434 // SI - added protection
435 if (tCorrected < Eliq[excitationLevel]) return 0;
436 //
437
438 G4int z = 10;
439
440 G4double numerator;
441 numerator = gpow->powA(z * aj[excitationLevel], omegaj[excitationLevel]) *
442 gpow->powA(tCorrected - Eliq[excitationLevel], nu);
443
444 // H case : see S. Uehara et al. IJRB 77, 2, 139-154 (2001) - section 3.3
445
446 if (particleDefinition == hydrogenDef)
447 numerator = gpow->powA(z * 0.75*aj[excitationLevel], omegaj[excitationLevel]) *
448 gpow->powA(tCorrected - Eliq[excitationLevel], nu);
449
450
451 G4double power;
452 power = omegaj[excitationLevel] + nu;
453
454 G4double denominator;
455 denominator = gpow->powA(jj[excitationLevel], power) + gpow->powA(tCorrected, power);
456
457 G4double zEff = particleDefinition->GetPDGCharge() / eplus + particleDefinition->GetLeptonNumber();
458
459 zEff -= ( sCoefficient[0][particleTypeIndex] * S_1s(k, Eliq[excitationLevel], slaterEffectiveCharge[0][particleTypeIndex], 1.) +
460 sCoefficient[1][particleTypeIndex] * S_2s(k, Eliq[excitationLevel], slaterEffectiveCharge[1][particleTypeIndex], 2.) +
461 sCoefficient[2][particleTypeIndex] * S_2p(k, Eliq[excitationLevel], slaterEffectiveCharge[2][particleTypeIndex], 2.) );
462
463 if (particleDefinition == hydrogenDef) zEff = 1.;
464
465 G4double cross = sigma0 * zEff * zEff * numerator / denominator;
466
467
468 return cross;
469}
470
471//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
472
473G4int G4DNAMillerGreenExcitationModel::RandomSelect(G4double k,const G4ParticleDefinition* particle)
474{
475 G4int i = nLevels;
476 G4double value = 0.;
477 std::deque<G4double> values;
478
479 if ( particle == alphaPlusPlusDef ||
480 particle == protonDef||
481 particle == hydrogenDef ||
482 particle == alphaPlusDef ||
483 particle == heliumDef
484 )
485 {
486 while (i > 0)
487 {
488 i--;
489 G4double partial = PartialCrossSection(k,i,particle);
490 values.push_front(partial);
491 value += partial;
492 }
493
494 value *= G4UniformRand();
495
496 i = nLevels;
497
498 while (i > 0)
499 {
500 i--;
501 if (values[i] > value) return i;
502 value -= values[i];
503 }
504 }
505
506 /*
507 // add ONE or TWO electron-water excitation for alpha+ and helium
508
509 if ( particle == alphaPlusDef
510 ||
511 particle == heliumDef
512 )
513 {
514 while (i>0)
515 {
516 i--;
517
518 G4DNAEmfietzoglouExcitationModel * excitationXS = new G4DNAEmfietzoglouExcitationModel();
519 excitationXS->Initialise(G4Electron::ElectronDefinition());
520
521 G4double sigmaExcitation=0;
522
523 if (k*0.511/3728 > 8.23*eV && k*0.511/3728 < 10*MeV ) sigmaExcitation = excitationXS->PartialCrossSection(k*0.511/3728,i);
524
525 G4double partial = PartialCrossSection(k,i,particle);
526
527 if (particle == alphaPlusDef) partial = PartialCrossSection(k,i,particle) + sigmaExcitation;
528 if (particle == heliumDef) partial = PartialCrossSection(k,i,particle) + 2*sigmaExcitation;
529
530 values.push_front(partial);
531 value += partial;
532 delete excitationXS;
533 }
534
535 value*=G4UniformRand();
536
537 i=5;
538 while (i>0)
539 {
540 i--;
541
542 if (values[i]>value) return i;
543
544 value-=values[i];
545 }
546 }
547 */
548
549 return 0;
550}
551
552//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
553
554G4double G4DNAMillerGreenExcitationModel::Sum(G4double k, const G4ParticleDefinition* particle)
555{
556 G4double totalCrossSection = 0.;
557
558 for (G4int i=0; i<nLevels; i++)
559 {
560 totalCrossSection += PartialCrossSection(k,i,particle);
561 }
562 return totalCrossSection;
563}
564
565//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
566
567G4double G4DNAMillerGreenExcitationModel::S_1s(G4double t,
568 G4double energyTransferred,
569 G4double _slaterEffectiveCharge,
570 G4double shellNumber)
571{
572 // 1 - e^(-2r) * ( 1 + 2 r + 2 r^2)
573 // Dingfelder, in Chattanooga 2005 proceedings, formula (7)
574
575 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
576 G4double value = 1. - G4Exp(-2 * r) * ( ( 2. * r + 2. ) * r + 1. );
577
578 return value;
579}
580
581
582//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
583
584G4double G4DNAMillerGreenExcitationModel::S_2s(G4double t,
585 G4double energyTransferred,
586 G4double _slaterEffectiveCharge,
587 G4double shellNumber)
588{
589 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 2 r^4)
590 // Dingfelder, in Chattanooga 2005 proceedings, formula (8)
591
592 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
593 G4double value = 1. - G4Exp(-2 * r) * (((2. * r * r + 2.) * r + 2.) * r + 1.);
594
595 return value;
596
597}
598
599//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
600
601G4double G4DNAMillerGreenExcitationModel::S_2p(G4double t,
602 G4double energyTransferred,
603 G4double _slaterEffectiveCharge,
604 G4double shellNumber)
605{
606 // 1 - e^(-2 r) * ( 1 + 2 r + 2 r^2 + 4/3 r^3 + 2/3 r^4)
607 // Dingfelder, in Chattanooga 2005 proceedings, formula (9)
608
609 G4double r = R(t, energyTransferred, _slaterEffectiveCharge, shellNumber);
610 G4double value = 1. - G4Exp(-2 * r) * (((( 2./3. * r + 4./3.) * r + 2.) * r + 2.) * r + 1.);
611
612 return value;
613}
614
615//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
616
617G4double G4DNAMillerGreenExcitationModel::R(G4double t,
618 G4double energyTransferred,
619 G4double _slaterEffectiveCharge,
620 G4double shellNumber)
621{
622 // tElectron = m_electron / m_alpha * t
623 // Dingfelder, in Chattanooga 2005 proceedings, p 4
624
625 G4double tElectron = 0.511/3728. * t;
626
627 // The following is provided by M. Dingfelder
628 G4double H = 2.*13.60569172 * eV;
629 G4double value = std::sqrt ( 2. * tElectron / H ) / ( energyTransferred / H ) * (_slaterEffectiveCharge/shellNumber);
630
631 return value;
632}
633
@ eExcitedMolecule
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
static G4DNAGenericIonsManager * Instance()
G4ParticleDefinition * GetIon(const G4String &name)
G4double GetPartialCrossSection(const G4Material *, G4int, const G4ParticleDefinition *, G4double) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4DNAMillerGreenExcitationModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="DNAMillerGreenExcitationModel")
G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax) override
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
const std::vector< G4double > * GetNumMolPerVolTableFor(const G4Material *) const
Retrieve a table of molecular densities (number of molecules per unit volume) in the G4 unit system f...
static G4DNAMolecularMaterial * Instance()
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
std::size_t GetIndex() const
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
Definition G4Pow.hh:49
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powA(G4double A, G4double y) const
Definition G4Pow.hh:230
static G4Proton * ProtonDefinition()
Definition G4Proton.cc:85
void SetHighEnergyLimit(G4double)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
G4double LowEnergyLimit() const
G4double HighEnergyLimit() const
void SetLowEnergyLimit(G4double)
const G4Track * GetCurrentTrack() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)