Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AtomicTransitionManager.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// Authors: Elena Guardincerri ([email protected])
29// Alfonso Mantero ([email protected])
30//
31// History:
32// -----------
33// 16 Sep 2001 E. Guardincerri First Committed to cvs
34//
35// -------------------------------------------------------------------
36
38#include "G4EmParameters.hh"
39#include "G4FluoData.hh"
40#include "G4AugerData.hh"
41#include "G4AutoLock.hh"
42namespace { G4Mutex AtomicTransitionManagerMutex = G4MUTEX_INITIALIZER; }
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45G4AtomicTransitionManager* G4AtomicTransitionManager::instance = nullptr;
46
47//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49{
50 if (instance == nullptr) {
51 instance = new G4AtomicTransitionManager();
52 }
53 return instance;
54}
55
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
57G4AtomicTransitionManager::G4AtomicTransitionManager()
58 : augerData(nullptr),
59 verboseLevel(0),
60 isInitialized(false)
61{}
62
63//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
64G4AtomicTransitionManager::~G4AtomicTransitionManager()
65{
66 delete augerData;
67
68 for (auto& pos : shellTable){
69 std::vector<G4AtomicShell*>vec = pos.second;
70 std::size_t vecSize = vec.size();
71 for (std::size_t i=0; i< vecSize; ++i){
72 G4AtomicShell* shell = vec[i];
73 delete shell;
74 }
75 }
76
77 for (auto& ppos : transitionTable)
78 {
79 std::vector<G4FluoTransition*>vec = ppos.second;
80 std::size_t vecSize=vec.size();
81
82 for (std::size_t i=0; i< vecSize; ++i){
83 G4FluoTransition* transition = vec[i];
84 delete transition;
85 }
86 }
87}
88//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
90G4AtomicTransitionManager::Shell(G4int Z, size_t shellIndex) const
91{
92 auto pos = shellTable.find(Z);
93
94 if (pos!= shellTable.end())
95 {
96 std::vector<G4AtomicShell*> v = (*pos).second;
97 if (shellIndex < v.size()) { return v[shellIndex]; }
98
99 else
100 {
101 size_t lastShell = v.size();
103 ed << "No de-excitation for Z= " << Z
104 << " shellIndex= " << shellIndex
105 << ">= numberOfShells= " << lastShell;
106 if (verboseLevel > 0)
107 G4Exception("G4AtomicTransitionManager::Shell()","de0001",
108 JustWarning,ed," AtomicShell not found");
109 if (lastShell > 0) { return v[lastShell - 1]; }
110 }
111 }
112 else
113 {
115 ed << "No de-excitation for Z= " << Z
116 << " shellIndex= " << shellIndex
117 << ". AtomicShell not found - check if data are uploaded";
118 G4Exception("G4AtomicTransitionManager::Shell()","de0001",
119 FatalException,ed,"");
120 }
121 return 0;
122}
123
124//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
125
126// This function gives, upon Z and the Index of the initial shell where
127// the vacancy is, the radiative transition that can happen (originating
128// shell, energy, probability)
129const G4FluoTransition*
131{
132 auto pos = transitionTable.find(Z);
133 if (pos!= transitionTable.end())
134 {
135 std::vector<G4FluoTransition*> v = (*pos).second;
136 if (shellIndex < v.size()) { return(v[shellIndex]); }
137
138 else {
140 ed << "No fluo transition for Z= " << Z
141 << " shellIndex= " << shellIndex;
142 G4Exception("G4AtomicTransitionManager::ReachebleShell()","de0002",
143 FatalException,ed,"");
144 }
145 }
146 else
147 {
149 ed << "No transition table for Z= " << Z
150 << " shellIndex= " << shellIndex;
151 G4Exception("G4AtomicTransitionManager::ReachableShell()","de0001",
152 FatalException,ed,"");
153 }
154 return 0;
155}
156
157//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
158const G4AugerTransition*
160 G4int vacancyShellIndex) const
161{
162 return augerData->GetAugerTransition(Z,vacancyShellIndex);
163}
164
165//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
167{
168 auto pos = shellTable.find(Z);
169
170 std::size_t res = 0;
171 if (pos != shellTable.cend()){
172
173 res = ((*pos).second).size();
174
175 } else {
177 ed << "No deexcitation for Z= " << Z;
178 G4Exception("G4AtomicTransitionManager::NumberOfShells()","de0001",
179 FatalException, ed, "");
180 }
181 return (G4int)res;
182}
183
184//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
185// This function returns the number of possible radiative transitions for
186// the atom with atomic number Z i.e. the number of shell in wich a vacancy
187// can be filled with a radiative transition
189{
190 auto pos = transitionTable.find(Z);
191 std::size_t res = 0;
192 if (pos!= transitionTable.cend())
193 {
194 res = ((*pos).second).size();
195 }
196 else
197 {
199 ed << "No deexcitation for Z= " << Z
200 << ", so energy deposited locally";
201 G4Exception("G4AtomicTransitionManager::NumberOfReachebleShells()",
202 "de0001",FatalException,ed,"");
203 }
204 return (G4int)res;
205}
206
207//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
208// This function returns the number of possible NON-radiative transitions
209// for the atom with atomic number Z i.e. the number of shell in wich a
210// vacancy can be filled with a NON-radiative transition
215
216//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
218 G4int Z, size_t shellIndex) const
219{
220 auto pos = transitionTable.find(Z);
221 G4double totalRadTransProb = 0.0;
222
223 if (pos!= transitionTable.end())
224 {
225 std::vector<G4FluoTransition*> v = (*pos).second;
226
227 if (shellIndex < v.size())
228 {
229 G4FluoTransition* transition = v[shellIndex];
230 G4DataVector transProb = transition->TransitionProbabilities();
231
232 for (size_t j=0; j<transProb.size(); ++j)
233 {
234 totalRadTransProb += transProb[j];
235 }
236 }
237 else
238 {
240 ed << "Zero transition probability for Z=" << Z
241 << " shellIndex= " << shellIndex;
243 "G4AtomicTransitionManager::TotalRadiativeTransitionProbability()",
244 "de0002",FatalException,"Incorrect de-excitation");
245 }
246 }
247 else
248 {
250 ed << "No deexcitation for Z=" << Z
251 << " shellIndex= " << shellIndex;
253 "G4AtomicTransitionManager::TotalRadiativeTransitionProbability()",
254 "de0001",FatalException,ed,"Cannot compute transition probability");
255 }
256 return totalRadTransProb;
257}
258
259//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
261 G4int Z, size_t shellIndex) const
262{
263 G4double prob = 1.0 - TotalRadiativeTransitionProbability(Z, shellIndex);
264 if(prob > 1.0 || prob < 0.0) {
266 ed << "Total probability mismatch Z= " << Z
267 << " shellIndex= " << shellIndex
268 << " prob= " << prob;
270 "G4AtomicTransitionManager::TotalNonRadiativeTransitionProbability()",
271 "de0003",FatalException,ed,"Cannot compute non-radiative probability");
272 return 0.0;
273 }
274 return prob;
275}
276
277//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
279{
280 if(isInitialized) { return; }
281 G4AutoLock l(&AtomicTransitionManagerMutex);
282
283 if(isInitialized) { return; }
284 isInitialized = true;
285
286 // Selection of fluorescence files
287
288 G4String defaultDirectory = "/fluor";
289 G4String fluoDirectory = defaultDirectory;
290 G4String bindingDirectory = defaultDirectory;
292 G4int zLim = zMax + 1;
293 if(fdir == fluoBearden) {
294 zMax = 100;
295 supTableLimit = 100;
296 bindingDirectory = fluoDirectory = "/fluor_Bearden";
297 } else if(fdir == fluoANSTO) {
298 zLim = 93;
299 fluoDirectory = "/fluor_ANSTO";
300 } else if(fdir == fluoXDB_EADL) {
301 zMax = 100;
302 supTableLimit = 100;
303 bindingDirectory = fluoDirectory = "/fluor_XDB_EADL";
304 }
305
306 // infTableLimit is initialized to 6 because EADL lacks data for Z<=5
307 G4ShellData* shellManager = new G4ShellData(1, zMax, false);
308 shellManager->LoadData(bindingDirectory + "/binding");
309
310 // initialization of the data for auger effect
311 augerData = new G4AugerData;
312
313 // Fills shellTable with the data from EADL, identities and binding
314 // energies of shells
315 for (G4int Z = zMin; Z <= zMax; ++Z)
316 {
317 std::vector<G4AtomicShell*> vectorOfShells;
318 G4int shellIndex = 0;
319
320 G4int numberOfShells = (G4int)shellManager->NumberOfShells(Z);
321 for (shellIndex = 0; shellIndex<numberOfShells; ++shellIndex)
322 {
323 G4int shellId = shellManager->ShellId(Z,shellIndex);
324 G4double bindingEnergy = shellManager->BindingEnergy(Z,shellIndex);
325 G4AtomicShell * shell = new G4AtomicShell(shellId,bindingEnergy);
326 vectorOfShells.push_back(shell);
327 }
328 shellTable[Z] = vectorOfShells;
329 }
330
331 // Fills transitionTable with the data on identities, transition
332 // energies and transition probabilities
333 G4String dir = fluoDirectory;
334 for (G4int Znum= infTableLimit; Znum<=supTableLimit; ++Znum)
335 {
336 if (Znum == zLim) { dir = defaultDirectory; }
337 G4FluoData* fluoManager = new G4FluoData(dir);
338 std::vector<G4FluoTransition*> vectorOfTransitions;
339 fluoManager->LoadData(Znum);
340
341 G4int numberOfVacancies = (G4int)fluoManager->NumberOfVacancies();
342 for(G4int vacancyIndex = 0; vacancyIndex<numberOfVacancies;
343 ++vacancyIndex)
344 {
345 std::vector<G4int> vectorOfIds;
346 G4DataVector vectorOfEnergies;
347 G4DataVector vectorOfProbabilities;
348
349 G4int finalShell = fluoManager->VacancyId(vacancyIndex);
350 G4int numberOfTransitions = (G4int)
351 fluoManager->NumberOfTransitions(vacancyIndex);
352 for (G4int origShellIndex = 0; origShellIndex < numberOfTransitions;
353 ++origShellIndex)
354 {
355 G4int originatingShellId =
356 fluoManager->StartShellId(origShellIndex,vacancyIndex);
357 vectorOfIds.push_back(originatingShellId);
358
359 G4double transitionEnergy =
360 fluoManager->StartShellEnergy(origShellIndex,vacancyIndex);
361 vectorOfEnergies.push_back(transitionEnergy);
362 G4double transitionProbability =
363 fluoManager->StartShellProb(origShellIndex,vacancyIndex);
364 vectorOfProbabilities.push_back(transitionProbability);
365 }
366 G4FluoTransition* transition =
367 new G4FluoTransition (finalShell,vectorOfIds,
368 vectorOfEnergies,vectorOfProbabilities);
369 vectorOfTransitions.push_back(transition);
370 }
371 transitionTable[Znum] = vectorOfTransitions;
372 delete fluoManager;
373 }
374 delete shellManager;
375 l.unlock();
376}
G4EmFluoDirectory
@ fluoBearden
@ fluoXDB_EADL
@ fluoANSTO
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
std::ostringstream G4ExceptionDescription
#define G4MUTEX_INITIALIZER
std::mutex G4Mutex
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
G4int NumberOfReachableShells(G4int Z) const
G4double TotalRadiativeTransitionProbability(G4int Z, size_t shellIndex) const
const G4AugerTransition * ReachableAugerShell(G4int Z, G4int shellIndex) const
G4AtomicShell * Shell(G4int Z, size_t shellIndex) const
const G4FluoTransition * ReachableShell(G4int Z, size_t shellIndex) const
void Initialise()
needs to be called once from other code before start of run
G4double TotalNonRadiativeTransitionProbability(G4int Z, size_t shellIndex) const
static G4AtomicTransitionManager * Instance()
G4int NumberOfReachableAugerShells(G4int Z) const
size_t NumberOfVacancies(G4int Z) const
G4AugerTransition * GetAugerTransition(G4int Z, G4int vacancyShellIndex)
static G4EmParameters * Instance()
G4EmFluoDirectory FluoDirectory() const
std::size_t NumberOfTransitions(G4int vacancyIndex) const
G4double StartShellEnergy(G4int initIndex, G4int vacancyIndex) const
G4int VacancyId(G4int vacancyIndex) const
Given the index of the vacancy returns its identity.
Definition G4FluoData.cc:81
std::size_t NumberOfVacancies() const
Definition G4FluoData.cc:74
void LoadData(G4int Z)
G4int StartShellId(G4int initIndex, G4int vacancyIndex) const
G4double StartShellProb(G4int initIndex, G4int vacancyIndex) const
const G4DataVector & TransitionProbabilities() const
Return the probabilities of the transitions.
G4int ShellId(G4int Z, G4int shellIndex) const
G4double BindingEnergy(G4int Z, G4int shellIndex) const
void LoadData(const G4String &fileName)
std::size_t NumberOfShells(G4int Z) const