Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4hIonEffChargeSquare.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4hIonEffChargeSquare
33//
34// Author: V.Ivanchenko ([email protected])
35//
36// Creation date: 20 July 2000
37//
38// Modifications:
39// 20/07/2000 V.Ivanchenko First implementation
40// 18/06/2001 V.Ivanchenko Continuation for eff.charge (small change of y)
41// 08/10/2002 V.Ivanchenko The charge of the nucleus is used not charge of
42// DynamicParticle
43//
44// Class Description:
45//
46// Ion effective charge model
47// J.F.Ziegler and J.M.Manoyan, The stopping of ions in compaunds,
48// Nucl. Inst. & Meth. in Phys. Res. B35 (1988) 215-228.
49//
50// Class Description: End
51//
52// -------------------------------------------------------------------
53//
54//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
55
58#include "G4SystemOfUnits.hh"
59#include "G4DynamicParticle.hh"
61#include "G4Material.hh"
62#include "G4Element.hh"
63#include "G4Exp.hh"
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
66
68 : G4VLowEnergyModel(name),
69 theHeMassAMU(4.0026)
70{;}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
73
76
77//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
78
80 const G4Material* material)
81{
82 G4double energy = particle->GetKineticEnergy() ;
83 G4double particleMass = particle->GetMass() ;
84 G4double charge = (particle->GetDefinition()->GetPDGCharge())/eplus ;
85
86 G4double q = IonEffChargeSquare(material,energy,particleMass,charge) ;
87
88 return q ;
89}
90
91//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
92
94 const G4Material* material,
95 G4double kineticEnergy)
96{
97 // SetRateMass(aParticle) ;
98 G4double particleMass = aParticle->GetPDGMass() ;
99 G4double charge = (aParticle->GetPDGCharge())/eplus ;
100
101 G4double q = IonEffChargeSquare(material,kineticEnergy,particleMass,charge) ;
102
103 return q ;
104}
105
106//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
107
109 const G4ParticleDefinition* ,
110 const G4Material* ) const
111{
112 return 1.0*TeV ;
113}
114
115//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
116
118 const G4ParticleDefinition* ,
119 const G4Material* ) const
120{
121 return 0.0 ;
122}
123
124//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
125
127 const G4ParticleDefinition* ) const
128{
129 return 1.0*TeV ;
130}
131
132//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
133
135 const G4ParticleDefinition* ) const
136{
137 return 0.0 ;
138}
139
140//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
141
143 const G4Material* ) const
144{
145 return true ;
146}
147
148//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
149
151 const G4Material* ) const
152{
153 return true ;
154}
155
156//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
157
158G4double G4hIonEffChargeSquare::IonEffChargeSquare(
159 const G4Material* material,
160 G4double kineticEnergy,
161 G4double particleMass,
162 G4double ionCharge) const
163{
164 // The aproximation of ion effective charge from:
165 // J.F.Ziegler, J.P. Biersack, U. Littmark
166 // The Stopping and Range of Ions in Matter,
167 // Vol.1, Pergamon Press, 1985
168
169 // Fast ions or hadrons
170 G4double reducedEnergy = kineticEnergy * proton_mass_c2/particleMass ;
171 if(reducedEnergy < 1.0*keV) reducedEnergy = 1.0*keV;
172 if( (reducedEnergy > ionCharge * 10.0 * MeV) ||
173 (ionCharge < 1.5) ) return ionCharge*ionCharge ;
174
175 static const G4double vFermi[92] = {
176 1.0309, 0.15976, 0.59782, 1.0781, 1.0486, 1.0, 1.058, 0.93942, 0.74562, 0.3424,
177 0.45259, 0.71074, 0.90519, 0.97411, 0.97184, 0.89852, 0.70827, 0.39816, 0.36552, 0.62712,
178 0.81707, 0.9943, 1.1423, 1.2381, 1.1222, 0.92705, 1.0047, 1.2, 1.0661, 0.97411,
179 0.84912, 0.95, 1.0903, 1.0429, 0.49715, 0.37755, 0.35211, 0.57801, 0.77773, 1.0207,
180 1.029, 1.2542, 1.122, 1.1241, 1.0882, 1.2709, 1.2542, 0.90094, 0.74093, 0.86054,
181 0.93155, 1.0047, 0.55379, 0.43289, 0.32636, 0.5131, 0.695, 0.72591, 0.71202, 0.67413,
182 0.71418, 0.71453, 0.5911, 0.70263, 0.68049, 0.68203, 0.68121, 0.68532, 0.68715, 0.61884,
183 0.71801, 0.83048, 1.1222, 1.2381, 1.045, 1.0733, 1.0953, 1.2381, 1.2879, 0.78654,
184 0.66401, 0.84912, 0.88433, 0.80746, 0.43357, 0.41923, 0.43638, 0.51464, 0.73087, 0.81065,
185 1.9578, 1.0257} ;
186
187 static const G4double c[6] = {0.2865, 0.1266, -0.001429,
188 0.02402,-0.01135, 0.001475} ;
189
190 // get elements in the actual material,
191 const G4ElementVector* theElementVector = material->GetElementVector() ;
192 const G4double* theAtomicNumDensityVector =
193 material->GetAtomicNumDensityVector() ;
194 const G4int NumberOfElements = (G4int)material->GetNumberOfElements() ;
195
196 // loop for the elements in the material
197 // to find out average values Z, vF, lF
198 G4double z = 0.0, vF = 0.0, norm = 0.0 ;
199
200 if( 1 == NumberOfElements ) {
201 z = material->GetZ() ;
202 G4int iz = G4int(z) - 1 ;
203 if(iz < 0) iz = 0 ;
204 else if(iz > 91) iz = 91 ;
205 vF = vFermi[iz] ;
206
207 } else {
208 for (G4int iel=0; iel<NumberOfElements; iel++)
209 {
210 const G4Element* element = (*theElementVector)[iel] ;
211 G4double z2 = element->GetZ() ;
212 const G4double weight = theAtomicNumDensityVector[iel] ;
213 norm += weight ;
214 z += z2 * weight ;
215 G4int iz = G4int(z2) - 1 ;
216 if(iz < 0) iz = 0 ;
217 else if(iz > 91) iz =91 ;
218 vF += vFermi[iz] * weight ;
219 }
220 z /= norm ;
221 vF /= norm ;
222 }
223
224 // Helium ion case
225 if( ionCharge < 2.5 ) {
226
227 G4double e = std::log(std::max(1.0, kineticEnergy / (keV*theHeMassAMU) )) ;
228 G4double x = c[0] ;
229 G4double y = 1.0 ;
230 for (G4int i=1; i<6; i++) {
231 y *= e ;
232 x += y * c[i] ;
233 }
234 G4double q = 7.6 - e ;
235 q = 1.0 + ( 0.007 + 0.00005 * z ) * G4Exp( -q*q ) ;
236 return 4.0 * q * q * (1.0 - G4Exp(-x)) ;
237
238 // Heavy ion case
239 } else {
240
241 // v1 is ion velocity in vF unit
242 G4double v1 = std::sqrt( reducedEnergy / (25.0 * keV) )/ vF ;
243 G4double y ;
244 G4double z13 = std::pow(ionCharge, 0.3333) ;
245
246 // Faster than Fermi velocity
247 if ( v1 > 1.0 ) {
248 y = vF * v1 * ( 1.0 + 0.2 / (v1*v1) ) / (z13*z13) ;
249
250 // Slower than Fermi velocity
251 } else {
252 y = 0.6923 * vF * (1.0 + 2.0*v1*v1/3.0 + v1*v1*v1*v1/15.0) / (z13*z13) ;
253 }
254
255 G4double y3 = std::pow(y, 0.3) ;
256 G4double q = 1.0 - G4Exp( 0.803*y3 - 1.3167*y3*y3 -
257 0.38157*y - 0.008983*y*y ) ;
258 if( q < 0.0 ) q = 0.0 ;
259
260 G4double sLocal = 7.6 - std::log(std::max(1.0, reducedEnergy/keV)) ;
261 sLocal = 1.0 + ( 0.18 + 0.0015 * z ) * G4Exp( -sLocal*sLocal )/ (ionCharge*ionCharge) ;
262
263 // Screen length according to
264 // J.F.Ziegler and J.M.Manoyan, The stopping of ions in compaunds,
265 // Nucl. Inst. & Meth. in Phys. Res. B35 (1988) 215-228.
266
267 G4double lambda = 10.0 * vF * std::pow(1.0-q, 0.6667) / (z13 * (6.0 + q)) ;
268 G4double qeff = ionCharge * sLocal *
269 ( q + 0.5*(1.0-q) * std::log(1.0 + lambda*lambda) / (vF*vF) ) ;
270 if( 0.1 > qeff ) qeff = 0.1 ;
271 return qeff*qeff ;
272 }
273}
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
G4double GetMass() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition G4Element.hh:119
const G4ElementVector * GetElementVector() const
G4double GetZ() const
const G4double * GetAtomicNumDensityVector() const
std::size_t GetNumberOfElements() const
G4hIonEffChargeSquare(const G4String &name)
G4double LowEnergyLimit(const G4ParticleDefinition *aParticle, const G4Material *material) const override
G4bool IsInCharge(const G4DynamicParticle *particle, const G4Material *material) const override
G4double HighEnergyLimit(const G4ParticleDefinition *aParticle, const G4Material *material) const override
G4double TheValue(const G4DynamicParticle *particle, const G4Material *material) override