Geant4 11.2.2
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLNuclearMassTable.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
38/** \file G4INCLNuclearMassTable.cc
39 * \brief Functions that encapsulate a mass table
40 *
41 * \date 22nd October 2013
42 * \author Davide Mancusi
43 */
44
45#ifndef INCLXX_IN_GEANT4_MODE
46
49#include "G4INCLGlobals.hh"
50#include <algorithm>
51#include <istream>
52
53namespace G4INCL {
54
55 namespace {
56
57 G4ThreadLocal G4double **theTable = NULL;
58 G4ThreadLocal G4int AMax = 0;
59 G4ThreadLocal G4int *ZMaxArray = NULL;
60 G4ThreadLocal G4double protonMass = 0.;
61 G4ThreadLocal G4double neutronMass = 0.;
62
63 const G4double amu = 931.494061; // atomic mass unit in MeV/c^2
64 const G4double eMass = 0.5109988; // electron mass in MeV/c^2
65
66 G4double getWeizsaeckerMass(const G4int A, const G4int Z) {
67 const G4int Npairing = (A-Z)%2; // pairing
68 const G4int Zpairing = Z%2;
69 const G4double fA = (G4double) A;
70 const G4double fZ = (G4double) Z;
72 - 15.67*fA // nuclear volume
73 + 17.23*Math::pow23(fA) // surface energy
74 + 93.15*((fA/2.-fZ)*(fA/2.-fZ))/fA // asymmetry
75 + 0.6984523*fZ*fZ*Math::powMinus13(fA); // coulomb
76 if( Npairing == Zpairing ) binding += (Npairing+Zpairing-1) * 12.0 / std::sqrt(fA); // pairing
77
80 }
81
82 void setMass(const G4int A, const G4int Z, const G4double mass) {
83 theTable[A][Z] = mass;
84 }
85
86 class MassRecord {
87 public:
88 MassRecord() :
89 A(0),
90 Z(0),
91 excess(0.)
92 {}
93
94 MassRecord(const G4int a, const G4int z, const G4double e) :
95 A(a),
96 Z(z),
97 excess(e)
98 {}
99
100 friend std::istream &operator>>(std::istream &in, MassRecord &record);
101
102 G4int A;
103 G4int Z;
104 G4double excess;
105 };
106
107 std::istream &operator>>(std::istream &in, MassRecord &record) {
108 return (in >> record.A >> record.Z >> record.excess);
109 }
110
111 G4bool compareA(const MassRecord &lhs, const MassRecord &rhs) {
112 return (lhs.A < rhs.A);
113 }
114
115 }
116
117 namespace NuclearMassTable {
118
119 void initialize(const std::string &path, const G4double pMass, const G4double nMass) {
120 protonMass = pMass;
121 neutronMass = nMass;
122
123 // Clear the existing tables, if any
124 deleteTable();
125
126 // File name
127 std::string fileName(path + "/walletlifetime.dat");
128 INCL_DEBUG("Reading real nuclear masses from file " << fileName << '\n');
129
130 // Open the file stream
131 std::ifstream massTableIn(fileName.c_str());
132 if(!massTableIn.good()) {
133 std::cerr << "Cannot open " << fileName << " data file." << '\n';
134 std::abort();
135 return;
136 }
137
138 // read the file
139 std::vector<MassRecord> records;
140 MassRecord record;
141 while(massTableIn.good()) { /* Loop checking, 10.07.2015, D.Mancusi */
142 massTableIn >> record;
143 records.push_back(record);
144 }
145 massTableIn.close();
146 INCL_DEBUG("Read " << records.size() << " nuclear masses" << '\n');
147
148 // determine the max A
149 AMax = std::max_element(records.begin(), records.end(), compareA)->A;
150 INCL_DEBUG("Max A in nuclear-mass table = " << AMax << '\n');
151 ZMaxArray = new G4int[AMax+1];
152 std::fill(ZMaxArray, ZMaxArray+AMax+1, 0);
153 theTable = new G4double*[AMax+1];
154 std::fill(theTable, theTable+AMax+1, static_cast<G4double*>(NULL));
155
156 // determine the max A per Z
157 for(std::vector<MassRecord>::const_iterator i=records.begin(), e=records.end(); i!=e; ++i) {
158 ZMaxArray[i->A] = std::max(ZMaxArray[i->A], i->Z);
159 }
160
161 // allocate the arrays
162 for(G4int A=1; A<=AMax; ++A) {
163 theTable[A] = new G4double[ZMaxArray[A]+1];
164 std::fill(theTable[A], theTable[A]+ZMaxArray[A]+1, -1.);
165 }
166
167 // fill the actual masses
168 for(std::vector<MassRecord>::const_iterator i=records.begin(), e=records.end(); i!=e; ++i) {
169 setMass(i->A, i->Z, i->A*amu + i->excess - i->Z*eMass);
170 }
171 }
172
173 G4double getMass(const G4int A, const G4int Z) {
174 if(A>AMax || Z>ZMaxArray[A]) {
175 INCL_DEBUG("Real mass unavailable for isotope A=" << A << ", Z=" << Z
176 << ", using Weizsaecker's formula"
177 << '\n');
178 return getWeizsaeckerMass(A,Z);
179 }
180
181 const G4double mass = theTable[A][Z];
182 if(mass<0.) {
183 INCL_DEBUG("Real mass unavailable for isotope A=" << A << ", Z=" << Z
184 << ", using Weizsaecker's formula"
185 << '\n');
186 return getWeizsaeckerMass(A,Z);
187 } else
188 return mass;
189 }
190
191 G4double getMass(const G4int A, const G4int Z, const G4int S){
192 if(S>=0) return getMass(A,Z);
193
194// assert(A >= 1);
195// assert(Z < A);
196// assert(S*(-1)<=A);
197
198 const G4double mL = ParticleTable::getRealMass(Lambda); // mLambda
199 if(A == (-1)*S) return A*mL;
200
201 if( A==2 && Z == 0) { // No stable hypernuclei with A=2
202 return mL+ParticleTable::getRealMass(Neutron);
203 }
204 else if( Z == 0) { // No stable hypernuclei with Z=0
205 return (A+S)*ParticleTable::getRealMass(Neutron)-mL*S;
206 }
207 else if( A==2 && Z == 1) {
208 return mL+ParticleTable::getRealMass(Proton);
209 }
210
211
212 const G4double b7=25.; // (MeV)
213 const G4double b8=10.5; // Slope
214 const G4double a2=0.13; // BindingEnergy for d+Lambda(MeV)
215 const G4double a3=2.2; // BindingEnergy for (t/He3)+Lamb(MeV)
216 const G4double eps =0.0001; // security value (MeV)
217
218 G4double mass = getMass(A+S, Z);
219
220 G4double bs=0.;
221 if (A+S ==2) bs=a2; // for nnL,npL,ppL
222 else if(A+S ==3) bs=a3; // for 3nL,2npL,n2pL,3pL
223 else if(A+S >3) bs=b7*std::exp(-b8/(A+S+1.));
224 mass += (-1)*S*(mL-bs) + eps;
225
226 return mass;
227 }
228
229 void deleteTable() {
230 delete[] ZMaxArray;
231 ZMaxArray = NULL;
232 for(G4int A=1; A<=AMax; ++A)
233 delete[] theTable[A];
234 delete[] theTable;
235 theTable = NULL;
236 }
237 }
238
239}
240
241#endif // INCLXX_IN_GEANT4_MODE
std::istream & operator>>(std::istream &s, G4BetaDecayType &q)
G4double S(G4double temp)
#define INCL_DEBUG(x)
Functions that encapsulate a mass table.
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
G4double pow23(G4double x)
G4double powMinus13(G4double x)
G4double getRealMass(const G4INCL::ParticleType t)
Get particle mass (in MeV/c^2)
#define G4ThreadLocal
Definition tls.hh:77