Geant4
11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NuDEXNeutronCaptureModel.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// -------------------------------------------------------------------
28
//
29
// GEANT4 header file
30
//
31
// File name: G4NuDEXNeutronCaptureModel
32
//
33
// Author: E.Mendoza & A.Ribon
34
//
35
// Creation date: 29 May 2024
36
//
37
// Description: This class (a proxy of the class G4NuDEX) uses
38
// the NuDEX model to produce gammas and internal
39
// conversion electrons from neutron capture.
40
// Whenever NuDEX is not applicable, G4PhotonEvaporation
41
// is used.
42
// The implementation of this class follows the code
43
// of the class G4NeutronRadCapture.
44
//
45
// Modifications:
46
//
47
// -------------------------------------------------------------------
48
//
49
// Class to use NuDEX model inside Geant4
50
//
51
52
#ifndef G4NUDEXNEUTRONCAPTUREMODEL_HH
53
#define G4NUDEXNEUTRONCAPTUREMODEL_HH 1
54
55
#include "
globals.hh
"
56
#include "
G4HadronicInteraction.hh
"
57
#include "
G4HadProjectile.hh
"
58
#include "
G4Nucleus.hh
"
59
60
class
G4NuDEXStatisticalNucleus
;
61
class
G4VEvaporationChannel
;
62
63
64
#define G4NUDEX_MAXZA 120000
65
66
67
class
G4NuDEXNeutronCaptureModel
:
public
G4HadronicInteraction
{
68
public
:
69
explicit
G4NuDEXNeutronCaptureModel
();
70
virtual
~G4NuDEXNeutronCaptureModel
();
71
72
virtual
G4HadFinalState
*
ApplyYourself
(
const
G4HadProjectile
&aTrack,
G4Nucleus
&targetNucleus )
final
;
73
virtual
void
InitialiseModel
()
final
;
74
75
private
:
76
G4NuDEXNeutronCaptureModel
& operator=(
const
G4NuDEXNeutronCaptureModel
&right ) =
delete
;
77
G4NuDEXNeutronCaptureModel
(
const
G4NuDEXNeutronCaptureModel
& ) =
delete
;
78
79
G4int
GenerateNeutronCaptureCascade(
G4int
theZ,
G4int
theA,
G4double
NeutronEnergy,
G4int
InitialLevel,
80
std::vector< char >& pType, std::vector< G4double >& pEnergy, std::vector< G4double >& pTime );
81
82
// Initial level for neutron capture. If jspinx2v < 0 it is sampled according to the 2J+1 rule
83
// l-spin = 0, 1, 2 --> s-wave, p-wave, d-wave ...
84
G4int
SelectInitialLevel(
G4int
theCompoundZ,
G4int
theCompoundA,
G4double
NeutronEnergy,
G4int
lspin,
G4int
jspinx2 );
85
G4int
SampleJ(
G4int
theCompoundZ,
G4int
theCompoundA,
G4int
lspin );
86
G4int
GetAllowedJx2values(
G4int
theCompoundZ,
G4int
theCompoundA,
G4int
lspin,
G4int
* jx2vals );
87
88
const
G4NuDEXStatisticalNucleus
* GetStatisticalNucleus(
G4int
za ) {
return
theStatisticalNucleus[za]; }
89
G4int
Init(
G4int
theZA,
unsigned
int
seed1 = 0,
unsigned
int
seed2 = 0,
unsigned
int
seed3 = 0 );
90
void
SetBandWidth(
G4double
bandWidth ) { BandWidth = bandWidth; }
91
void
SetBrOption(
G4int
brOption ) { BrOption = brOption; }
92
93
G4NuDEXStatisticalNucleus
* theStatisticalNucleus[
G4NUDEX_MAXZA
];
94
G4int
HasData[
G4NUDEX_MAXZA
];
// -1:no; 0:don't know; 1:yes
95
G4String
NuDEXLibDirectory;
96
G4int
BrOption;
97
G4double
BandWidth;
98
99
G4int
secID;
// creator model ID for the other secondaries produced by this model
100
G4double
lowestEnergyLimit;
101
G4double
minExcitation;
102
G4VEvaporationChannel
* photonEvaporation;
// Needed when NuDEX is not applicable
103
};
104
105
#endif
G4HadProjectile.hh
G4HadronicInteraction.hh
G4NUDEX_MAXZA
#define G4NUDEX_MAXZA
Definition
G4NuDEXNeutronCaptureModel.hh:64
G4Nucleus.hh
G4double
double G4double
Definition
G4Types.hh:83
G4int
int G4int
Definition
G4Types.hh:85
G4HadFinalState
Definition
G4HadFinalState.hh:46
G4HadProjectile
Definition
G4HadProjectile.hh:40
G4HadronicInteraction::G4HadronicInteraction
G4HadronicInteraction(const G4String &modelName="HadronicModel")
Definition
G4HadronicInteraction.cc:41
G4NuDEXNeutronCaptureModel::~G4NuDEXNeutronCaptureModel
virtual ~G4NuDEXNeutronCaptureModel()
Definition
G4NuDEXNeutronCaptureModel.cc:104
G4NuDEXNeutronCaptureModel::ApplyYourself
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) final
Definition
G4NuDEXNeutronCaptureModel.cc:111
G4NuDEXNeutronCaptureModel::InitialiseModel
virtual void InitialiseModel() final
Definition
G4NuDEXNeutronCaptureModel.cc:91
G4NuDEXNeutronCaptureModel::G4NuDEXNeutronCaptureModel
G4NuDEXNeutronCaptureModel()
Definition
G4NuDEXNeutronCaptureModel.cc:73
G4NuDEXStatisticalNucleus
Definition
G4NuDEXStatisticalNucleus.hh:100
G4Nucleus
Definition
G4Nucleus.hh:52
G4String
Definition
G4String.hh:62
G4VEvaporationChannel
Definition
G4VEvaporationChannel.hh:50
globals.hh
geant4-v11.3.0
source
processes
hadronic
models
nudex
include
G4NuDEXNeutronCaptureModel.hh
Generated by
1.13.2