Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4INCLTransmissionChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
39
40namespace G4INCL {
41
43 : theNucleus(nucleus), theParticle(particle),
44 refraction(false),
45 pOutMag(0.),
46 kineticEnergyOutside(initializeKineticEnergyOutside()),
47 cosRefractionAngle(1.)
48 {}
49
50 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut)
51 : theNucleus(nucleus), theParticle(particle),
52 refraction(false),
53 pOutMag(0.),
54 kineticEnergyOutside(TOut),
55 cosRefractionAngle(1.)
56 {}
57
58 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR)
59 : theNucleus(nucleus), theParticle(particle),
60 refraction(true),
61 pOutMag(kOut),
62 kineticEnergyOutside(initializeKineticEnergyOutside()),
63 cosRefractionAngle(cosR)
64 {}
65
67
68 G4double TransmissionChannel::initializeKineticEnergyOutside() {
69 // The particle energy outside the nucleus. Subtract the nuclear
70 // potential from the kinetic energy when leaving the nucleus
71 G4double TOut = theParticle->getEnergy()
72 - theParticle->getPotentialEnergy()
73 - theParticle->getMass();
74
75 // Correction for real masses
76 const G4int AParent = theNucleus->getA();
77 const G4int ZParent = theNucleus->getZ();
78 const G4int SParent = theNucleus->getS();
79 const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent);
80 TOut += theQValueCorrection;
81 return TOut;
82 }
83
84 void TransmissionChannel::particleLeaves() {
85
86 // Use the table mass in the outside world
87 theParticle->setTableMass();
88 theParticle->setPotentialEnergy(0.);
89
90 if(refraction) {
91 // Change the momentum direction
92 // The magnitude of the particle momentum outside the nucleus will be
93 // fixed by the kineticEnergyOutside variable. This is done in order to
94 // avoid numerical inaccuracies.
95 const ThreeVector &position = theParticle->getPosition();
96 const G4double r2 = position.mag2();
97 ThreeVector normal;
98 if(r2>0.)
99 normal = position / std::sqrt(r2);
100
101 const ThreeVector &momentum = theParticle->getMomentum();
102
103 const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum);
104// assert(std::fabs(pOut.mag()-pOutMag)<1.e-5);
105
106 theParticle->setMomentum(pOut);
107 }
108 // Scaling factor for the particle momentum
109 theParticle->setEnergy(kineticEnergyOutside + theParticle->getMass());
110 theParticle->adjustMomentumFromEnergy();
111 }
112
114 G4double initialEnergy = 0.0;
115 initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy();
116 // Correction for real masses
117 const G4int AParent = theNucleus->getA();
118 const G4int ZParent = theNucleus->getZ();
119 const G4int SParent = theNucleus->getS();
120 initialEnergy += theParticle->getTableMass() - theParticle->getMass()
121 + theParticle->getEmissionQValueCorrection(AParent,ZParent,SParent);
122 particleLeaves();
123
124 fs->setTotalEnergyBeforeInteraction(initialEnergy);
125 fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing
126 }
127}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
void setTotalEnergyBeforeInteraction(G4double E)
void addOutgoingParticle(Particle *p)
void setPotentialEnergy(G4double v)
Set the particle potential energy.
G4int getS() const
Returns the strangeness number.
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
G4double getEnergy() const
G4double getPotentialEnergy() const
Get the particle potential energy.
G4int getZ() const
Returns the charge number.
const G4INCL::ThreeVector & getPosition() const
const G4INCL::ThreeVector & getMomentum() const
virtual void setMomentum(const G4INCL::ThreeVector &momentum)
G4double getMass() const
Get the cached particle mass.
void setTableMass()
Set the mass of the Particle to its table mass.
G4int getA() const
Returns the baryon number.
G4double dot(const ThreeVector &v) const
TransmissionChannel(Nucleus *n, Particle *p)