Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LENDFission.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26#include "G4LENDFission.hh"
27#include "G4SystemOfUnits.hh"
28#include "G4Nucleus.hh"
29#include "G4IonTable.hh"
30
32{
33
34 G4double temp = aTrack.GetMaterial()->GetTemperature();
35
36 //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this)
37 G4int iZ = aTarg.GetZ_asInt();
38 G4int iA = aTarg.GetA_asInt();
39 //G4int iM = aTarg.GetM_asInt();
40 G4int iM = 0;
41 if ( aTarg.GetIsotope() != NULL ) {
42 iM = aTarg.GetIsotope()->Getm();
43 }
44
45 G4double ke = aTrack.GetKineticEnergy();
46
48 theResult->Clear();
49
50 G4GIDI_target* aTarget = get_target_from_map( lend_manager->GetNucleusEncoding( iZ , iA , iM ) );
51 if ( aTarget == NULL ) return returnUnchanged( aTrack , theResult );
52 std::vector<G4GIDI_Product>* products = aTarget->getFissionFinalState( ke*MeV, temp, MyRNG, NULL );
53 if ( products != NULL )
54 {
55 for ( G4int j = 0; j < int( products->size() ); j++ )
56 {
57 G4int jZ = (*products)[j].Z;
58 G4int jA = (*products)[j].A;
59 G4int jM = (*products)[j].m;
60
61 //G4cout << "Z = " << (*products)[j].Z
62 // << ", A = " << (*products)[j].A
63 // << ", EK = " << (*products)[j].kineticEnergy << " [MeV]"
64 // << ", px = " << (*products)[j].px
65 // << ", py = " << (*products)[j].py
66 // << ", pz = " << (*products)[j].pz
67 // << ", birthTimeSec = " << (*products)[j].birthTimeSec << " [second]"
68 // << G4endl;
69
71
72 if ( jZ > 0 )
73 {
74 theSec->SetDefinition( G4IonTable::GetIonTable()->GetIon( jZ, jA , jM ) );
75 }
76 else if ( jA == 1 && jZ == 0 )
77 {
79 }
80 else
81 {
82 theSec->SetDefinition( G4Gamma::Gamma() );
83 }
84
85 theSec->SetMomentum( G4ThreeVector( (*products)[j].px*MeV , (*products)[j].py*MeV , (*products)[j].pz*MeV ) );
86 //G4cout << theSec->GetDefinition()->GetParticleName() << G4endl;
87 theResult->AddSecondary( theSec, secID );
88 //Set time for delayed neutrons
89 //Current implementation is a little tricky,
90 if ( (*products)[j].birthTimeSec != 0 ) {
91 G4double time = (*products)[j].birthTimeSec*second + aTrack.GetGlobalTime();
92 theResult->GetSecondary(theResult->GetNumberOfSecondaries()-1)->SetTime(time);
93 }
94 }
95 }
96 delete products;
97
98 theResult->SetStatusChange( stopAndKill );
99
100 return theResult;
101
102}
103const std::pair<G4double, G4double> G4LENDFission::GetFatalEnergyCheckLevels() const
104{
105 // max energy non-conservation is mass of heavy nucleus
106 //return std::pair<G4double, G4double>(5*perCent,250*GeV);
107 return std::pair<G4double, G4double>(5*perCent,DBL_MAX);
108}
@ stopAndKill
double MyRNG(void *)
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
std::vector< G4GIDI_Product > * getFissionFinalState(double e_in, double temperature, double(*rng)(void *), void *rngState)
static G4Gamma * Gamma()
Definition G4Gamma.cc:81
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
const G4Material * GetMaterial() const
G4double GetKineticEnergy() const
G4double GetGlobalTime() const
void SetTime(G4double aT)
static G4IonTable * GetIonTable()
G4int Getm() const
Definition G4Isotope.hh:89
virtual const std::pair< G4double, G4double > GetFatalEnergyCheckLevels() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
G4LENDManager * lend_manager
G4HadFinalState * returnUnchanged(const G4HadProjectile &aTrack, G4HadFinalState *theResult)
G4GIDI_target * get_target_from_map(G4int nuclear_code)
G4double GetTemperature() const
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
const G4Isotope * GetIsotope()
Definition G4Nucleus.hh:111
#define DBL_MAX
Definition templates.hh:62