77 twoln10(2.0*
G4Log(10.0)),
78 fAlphaTlimit(1*
CLHEP::GeV),
79 fProtonTlimit(10*
CLHEP::GeV)
96 if(p != particle) { SetupParameters(p); }
102 if(
nullptr == fParticleChange) {
103 const G4String& pname = particle->GetParticleName();
105 (pname ==
"proton" || pname ==
"GenericIon" || pname ==
"alpha")) {
106 fICRU90 = nist->GetICRU90StoppingData();
108 if (pname ==
"GenericIon") {
110 }
else if (pname ==
"alpha") {
112 }
else if (particle->GetPDGCharge() > 1.1*CLHEP::eplus) {
122 if(
IsMaster() &&
nullptr != fICRU90) {
123 fICRU90->Initialise();
134 if(isAlpha) {
return 1.0; }
135 chargeSquare = corr->EffectiveChargeSquareRatio(p, mat, kinEnergy);
146 return corr->GetParticleCharge(p, mat, kineticEnergy);
158 ratio = electron_mass_c2/mass;
159 constexpr G4double aMag = 1./(0.5*eplus*CLHEP::hbar_Planck*CLHEP::c_squared);
161 magMoment2 = magmom*magmom - 1.0;
166 if(spin == 0.0 && mass < CLHEP::GeV) { x = 0.736*CLHEP::GeV; }
167 else if (mass > CLHEP::GeV) {
169 if(iz > 1) { x /= nist->GetA27(iz); }
171 formfact = 2.0*CLHEP::electron_mass_c2/(x*x);
172 tlimit = 2.0/formfact;
194 const G4double cutEnergy = std::min(std::min(cut,tmax), tlimit);
195 const G4double maxEnergy = std::min(tmax, maxKinEnergy);
196 if(cutEnergy < maxEnergy) {
198 G4double totEnergy = kineticEnergy + mass;
199 G4double energy2 = totEnergy*totEnergy;
200 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
202 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy)
203 - beta2*
G4Log(maxEnergy/cutEnergy)/tmax;
206 if( 0.0 < spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; }
208 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2;
241 sigma *= corr->EffectiveChargeSquareRatio(p,mat,kinEnergy)/chargeSquare;
255 const G4double cutEnergy = std::min(std::min(cut,tmax), tlimit);
276 if(
nullptr != fICRU90 && kineticEnergy < fProtonTlimit) {
277 if(material != currentMaterial) {
278 currentMaterial = material;
281 iICRU90 = fICRU90->
GetIndex(baseMaterial);
287 if(kineticEnergy <= fAlphaTlimit) {
288 dedx = fICRU90->GetElectronicDEDXforAlpha(iICRU90, kineticEnergy);
290 const G4double e = kineticEnergy*CLHEP::proton_mass_c2/mass;
291 dedx = fICRU90->GetElectronicDEDXforProton(iICRU90, e)*chargeSquare;
294 dedx = fICRU90->GetElectronicDEDXforProton(iICRU90, kineticEnergy)
298 if(cutEnergy < tmax) {
299 dedx += (
G4Log(xc) + (1.0 - xc)*beta2)*CLHEP::twopi_mc2_rcl2
300 *(eDensity*chargeSquare/beta2);
303 if(dedx > 0.0) {
return dedx; }
307 G4double dedx =
G4Log(2.0*CLHEP::electron_mass_c2*bg2*cutEnergy/eexc2)
311 G4double del = 0.5*cutEnergy/(kineticEnergy + mass);
320 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy);
323 dedx *= CLHEP::twopi_mc2_rcl2*chargeSquare*eDensity/beta2;
327 dedx += corr->IonBarkasCorrection(p,material,kineticEnergy);
329 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy);
332 dedx = std::max(dedx, 0.0);
348 if(isAlpha) {
return; }
352 if(eloss >= preKinEnergy || eloss < preKinEnergy*0.05) {
return; }
356 if(p != particle) { SetupParameters(p); }
357 if(!isIon) {
return; }
360 const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5);
362 const G4double q20 = corr->EffectiveChargeSquareRatio(p, mat, preKinEnergy);
363 const G4double q2 = corr->EffectiveChargeSquareRatio(p, mat, e);
386 const G4double minKinEnergy = std::min(cut, tmax);
387 const G4double maxKinEnergy = std::min(maxEnergy, tmax);
388 if(minKinEnergy >= maxKinEnergy) {
return; }
393 const G4double totEnergy = kinEnergy + mass;
394 const G4double etot2 = totEnergy*totEnergy;
395 const G4double beta2 = kinEnergy*(kinEnergy + 2.0*mass)/etot2;
400 if( 0.0 < spin ) { fmax += 0.5*maxKinEnergy*maxKinEnergy/etot2; }
408 deltaKinEnergy = minKinEnergy*maxKinEnergy
409 /(minKinEnergy*(1.0 - rndm[0]) + maxKinEnergy*rndm[0]);
411 f = 1.0 - beta2*deltaKinEnergy/tmax;
413 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
418 }
while( fmax*rndm[1] > f);
423 G4double x = formfact*deltaKinEnergy;
429 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
430 grej *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
433 G4cout <<
"### G4BetheBlochModel WARNING: grej= " << grej
435 <<
" Ekin(MeV)= " << kinEnergy
436 <<
" delEkin(MeV)= " << deltaKinEnergy
439 if(rndmEngineMod->
flat() > grej) {
return; }
453 std::sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
454 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) /
456 cost = std::min(cost, 1.0);
457 const G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
460 deltaDirection.
set(sint*std::cos(phi),sint*std::sin(phi), cost) ;
477 vdp->push_back(delta);
480 kinEnergy -= deltaKinEnergy;
482 finalP = finalP.
unit();
484 fParticleChange->SetProposedKineticEnergy(kinEnergy);
485 fParticleChange->SetProposedMomentumDirection(finalP);
495 if(pd != particle) { SetupParameters(pd); }
497 return 2.0*CLHEP::electron_mass_c2*tau*(tau + 2.) /
498 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio);
G4double G4Log(G4double x)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
virtual void flatArray(const int size, double *vect)=0
void CorrectionsAlongStep(const G4MaterialCutsCouple *couple, const G4DynamicParticle *dp, const G4double &length, G4double &eloss) override
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double GetParticleCharge(const G4ParticleDefinition *p, const G4Material *mat, G4double kineticEnergy) override
G4double GetChargeSquareRatio() const
~G4BetheBlochModel() override
G4double MinEnergyCut(const G4ParticleDefinition *, const G4MaterialCutsCouple *couple) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4BetheBlochModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="BetheBloch")
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
static G4Electron * Electron()
static G4EmParameters * Instance()
G4double DensityCorrection(G4double x) const
G4double GetMeanExcitationEnergy() const
static G4LossTableManager * Instance()
G4EmCorrections * EmCorrections()
const G4Material * GetMaterial() const
G4double GetDensity() const
const G4Material * GetBaseMaterial() const
G4IonisParamMat * GetIonisation() const
G4double GetElectronDensity() const
std::size_t GetIndex() const
static G4NistManager * Instance()
G4double GetPDGMagneticMoment() const
G4double GetPDGMass() const
G4int GetLeptonNumber() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4double GetPDGSpin() const
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4VEmAngularDistribution * GetAngularDistribution()
G4int SelectRandomAtomNumber(const G4Material *) const
void SetLowEnergyLimit(G4double)
void SetDeexcitationFlag(G4bool val)
G4VEmModel(const G4String &nam)
void SetAngularDistribution(G4VEmAngularDistribution *)
G4bool UseAngularGeneratorFlag() const
G4ParticleChangeForLoss * GetParticleChangeForLoss()