Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4EvaporationChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//J.M. Quesada (August2008). Based on:
27//
28// Hadronic Process: Nuclear De-excitations
29// by V. Lara (Oct 1998)
30//
31// Modified:
32// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
33// 06-09-2008 J.M. Quesada Also external choices have been added for superimposed
34// Coulomb barrier (if useSICB is set true, by default is false)
35// 17-11-2010 V.Ivanchenko in constructor replace G4VEmissionProbability by
36// G4EvaporationProbability and do not new and delete probability
37// object at each call; use G4Pow
38
41#include "G4CoulombBarrier.hh"
42#include "G4NuclearLevelData.hh"
43#include "G4NucleiProperties.hh"
44#include "G4Pow.hh"
45#include "G4Log.hh"
46#include "G4Exp.hh"
48#include "G4SystemOfUnits.hh"
49#include "Randomize.hh"
50#include "G4RandomDirection.hh"
52
56 theProbability(aprob),
57 theCoulombBarrier(new G4CoulombBarrier(anA, aZ)),
58 theA(anA), theZ(aZ)
59{
60 secID = G4PhysicsModelCatalog::GetModelID("model_G4EvaporationChannel");
61 evapMass = G4NucleiProperties::GetNuclearMass(theA, theZ);
62 evapMass2 = evapMass*evapMass;
63 theLevelData = G4NuclearLevelData::GetInstance();
64}
65
67{
68 delete theCoulombBarrier;
69}
70
72{
73 theProbability->Initialise();
75}
76
78{
79 theProbability->ResetProbability();
80 G4int fragA = fragment->GetA_asInt();
81 G4int fragZ = fragment->GetZ_asInt();
82 resA = fragA - theA;
83 resZ = fragZ - theZ;
84
85 // Only channels which are physically allowed are taken into account
86 if(resA < theA || resA < resZ || resZ < 0 || (resA == theA && resZ < theZ)
87 || ((resA > 1) && (resA == resZ || resZ == 0)))
88 { return 0.0; }
89
90 G4double exEnergy = fragment->GetExcitationEnergy();
91 G4double fragMass = fragment->GetGroundStateMass();
92 mass = fragMass + exEnergy;
93 resMass = G4NucleiProperties::GetNuclearMass(resA, resZ);
94 if (mass <= evapMass + resMass) { return 0.0; }
95
96 ekinmax = 0.5*((mass-resMass)*(mass+resMass) + evapMass2)/mass - evapMass;
97
98 // for OPTxs=1 elim=0 for all fragments - x-section include the CoulombBarrier
99 G4double elim = 0.0;
100 if(theZ > 0) {
101 bCoulomb = theCoulombBarrier->GetCoulombBarrier(resA, resZ, 0.0);
102
103 // for OPTxs >0 penetration under the barrier is taken into account
104 elim = (0 < OPTxs) ? bCoulomb*0.5 : bCoulomb;
105 }
106 /*
107 G4cout << "G4EvaporationChannel::Initialize Z=" << theZ <<" A=" << theA
108 << " FragZ=" << fragZ << " FragA=" << fragA << G4endl;
109 G4cout << " Eex=" << exEnergy << " CB=" << bCoulomb
110 << " Elim=" << elim << " Efree=" << mass - resMass - evapMass
111 << G4endl;
112 */
113 // Coulomb barrier compound at rest
114 G4double resM = mass - evapMass - elim;
115 if (resM < resMass) { return 0.0; }
116 G4double ekinmin = 0.5*((mass-resM)*(mass+resM) + evapMass2)/mass - evapMass;
117
118 /*
119 G4cout << "Emin= " <<ekinmin<<" Emax= "<<ekinmax
120 << " mass= " << mass << " resM= " << resMass
121 << " evapM= " << evapMass << G4endl;
122 */
123 if(ekinmax <= ekinmin) { return 0.0; }
124
125 theProbability->SetDecayKinematics(resZ, resA, resMass, mass);
126 G4double prob = theProbability->TotalProbability(*fragment, ekinmin,
127 ekinmax, bCoulomb,
128 exEnergy);
129 return prob;
130}
131
133{
134 G4double ekin = ekinmax;
135 // assumed, that TotalProbability(...) was already called
136 // if value iz zero no possiblity to sample final state
137 if(resA > 4 && theProbability->GetProbability() > 0.0) {
138 ekin = theProbability->SampleEnergy();
139 }
140 ekin = std::max(ekin, 0.0);
141 G4LorentzVector lv0 = theNucleus->GetMomentum();
142 G4LorentzVector lv(std::sqrt(ekin*(ekin + 2.0*evapMass))*G4RandomDirection(),
143 ekin + evapMass);
144 lv.boost(lv0.boostVector());
145
146 G4Fragment* evFragment = new G4Fragment(theA, theZ, lv);
147 evFragment->SetCreatorModelID(secID);
148 lv0 -= lv;
149 theNucleus->SetZAandMomentum(lv0, resZ, resA);
150 theNucleus->SetCreatorModelID(secID);
151 return evFragment;
152}
153
155 G4double kinEnergy)
156{
157 G4double p = ComputeProbability(frag, kinEnergy);
158 return (p > 0.0) ? theProbability->RecentXS() : 0.0;
159}
160
162 G4double kinEnergy)
163{
164 G4double prob = GetEmissionProbability(frag);
165 if (prob <= 0.0) { return 0.0; }
166
167 bCoulomb = (theZ > 0) ? theCoulombBarrier->GetCoulombBarrier(resA, resZ, 0.0) : 0.0;
168 G4double p = theProbability->ComputeProbability(kinEnergy, bCoulomb);
169 return p;
170}
CLHEP::HepLorentzVector G4LorentzVector
G4ThreeVector G4RandomDirection()
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
G4EvaporationChannel(G4int A, G4int Z, G4EvaporationProbability *)
G4double ComputeInverseXSection(G4Fragment *, G4double kinEnergy) override
G4double GetEmissionProbability(G4Fragment *fragment) override
G4Fragment * EmittedFragment(G4Fragment *theNucleus) override
G4double ComputeProbability(G4Fragment *, G4double kinEnergy) override
G4double GetGroundStateMass() const
G4double GetExcitationEnergy() const
const G4LorentzVector & GetMomentum() const
void SetCreatorModelID(G4int value)
G4int GetZ_asInt() const
G4int GetA_asInt() const
void SetZAandMomentum(const G4LorentzVector &, G4int Z, G4int A, G4int nLambdas=0)
static G4NuclearLevelData * GetInstance()
static G4double GetNuclearMass(const G4double A, const G4double Z)
static G4int GetModelID(const G4int modelIndex)
G4VEvaporationChannel(const G4String &aName="")