Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ComponentGGNuclNuclXsc.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// 24.11.08 V. Grichine - first implementation
27//
28// 04.09.18 V. Ivantchenko Major revision of interfaces and implementation
29// 27.05.19 V. Ivantchenko Removed obsolete methods and members
30
32
34#include "G4SystemOfUnits.hh"
35#include "G4NucleiProperties.hh"
37#include "G4HadronNucleonXsc.hh"
39#include "G4NuclearRadii.hh"
40#include "G4Pow.hh"
41
42namespace
43{
44 const G4double inve = 1./CLHEP::eplus;
45}
46
48 : G4VComponentCrossSection("Glauber-Gribov Nucl-nucl")
49{
50 theProton = G4Proton::Proton();
51 theNeutron = G4Neutron::Neutron();
52 theLambda = G4Lambda::Lambda();
53 fHNXsc = new G4HadronNucleonXsc();
54 fHadrNucl = new G4ComponentGGHadronNucleusXsc();
55}
56
61
62//////////////////////////////////////////////////////////////////////
63
65 const G4ParticleDefinition* aParticle, G4double kinEnergy,
66 G4int Z, G4double A)
67{
68 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
69 return fTotalXsc;
70}
71
72////////////////////////////////////////////////////////////////////
73
75 const G4ParticleDefinition* aParticle, G4double kinEnergy,
76 G4int Z, G4int A)
77{
78 ComputeCrossSections(aParticle, kinEnergy, Z, A);
79 return fTotalXsc;
80}
81
82/////////////////////////////////////////////////////////////////////
83
85 const G4ParticleDefinition* aParticle, G4double kinEnergy,
86 G4int Z, G4double A)
87{
88 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
89 return fInelasticXsc;
90}
91
92////////////////////////////////////////////////////////////////////
93
95 const G4ParticleDefinition* aParticle, G4double kinEnergy,
96 G4int Z, G4int A)
97{
98 ComputeCrossSections(aParticle, kinEnergy, Z, A);
99 return fInelasticXsc;
100}
101
102//////////////////////////////////////////////////////////////////
103
105 const G4ParticleDefinition* aParticle, G4double kinEnergy,
106 G4int Z, G4double A)
107{
108 ComputeCrossSections(aParticle, kinEnergy, Z, G4lrint(A));
109 return fElasticXsc;
110}
111
112///////////////////////////////////////////////////////////////////
113
115 const G4ParticleDefinition* aParticle, G4double kinEnergy,
116 G4int Z, G4int A)
117{
118 ComputeCrossSections(aParticle, kinEnergy, Z, A);
119 return fElasticXsc;
120}
121
122////////////////////////////////////////////////////////////////
123
125 const G4ParticleDefinition* aParticle, G4double kinEnergy,
126 G4int Z, G4int A)
127{
128 ComputeCrossSections(aParticle, kinEnergy, Z, A);
129 return (fInelasticXsc > fProductionXsc)
130 ? (fInelasticXsc - fProductionXsc)/fInelasticXsc : 0.0;
131}
132
133//////////////////////////////////////////////////////////////////////
134
137
138//////////////////////////////////////////////////////////////////////
139
141{
142 G4cout << "G4ComponentGGNuclNuclXsc: uses Glauber-Gribov formula" << G4endl;
143}
144
145//////////////////////////////////////////////////////////////////////
146
147void G4ComponentGGNuclNuclXsc::Description(std::ostream& outFile) const
148{
149 outFile << "G4ComponentGGNuclNuclXsc calculates total, inelastic and\n"
150 << "elastic cross sections for nucleus-nucleus collisions using\n"
151 << "the Glauber model with Gribov corrections. It is valid for\n"
152 << "all incident energies above 100 keV./n"
153 << "For the hydrogen target G4HadronNucleonXsc class is used.\n";
154}
155
156///////////////////////////////////////////////////////////////////////////////
157//
158// Calculates total and inelastic Xsc, derives elastic as total - inelastic
159// accordong to Glauber model with Gribov correction calculated in the dipole
160// approximation on light cone. Gaussian density of point-like nucleons helps
161// to calculate rest integrals of the model. [1] B.Z. Kopeliovich,
162// nucl-th/0306044 + simplification above
163
164void G4ComponentGGNuclNuclXsc::ComputeCrossSections(
165 const G4ParticleDefinition* aParticle, G4double kinEnergy,
166 G4int Z, G4int A)
167{
168 // check cache
169 if(aParticle == fParticle && fZ == Z && fA == A && kinEnergy == fEnergy)
170 { return; }
171 fParticle = aParticle;
172 fZ = Z;
173 fA = A;
174 fEnergy = kinEnergy;
175 G4Pow* pG4Pow = G4Pow::GetInstance();
176
177 G4int pZ = G4lrint(aParticle->GetPDGCharge()*inve);
178 G4int pA = aParticle->GetBaryonNumber();
179 G4int pL = aParticle->GetNumberOfLambdasInHypernucleus();
180 G4bool pHN = aParticle->IsHypernucleus();
181 G4double cHN(0.88);
182
183 // hydrogen
184 if(1 == Z && 1 == A) {
185 G4double e = kinEnergy*CLHEP::proton_mass_c2/aParticle->GetPDGMass();
186 fHadrNucl->ComputeCrossSections( theProton, e, pZ, pA, pL );
187 fTotalXsc = fHadrNucl->GetTotalGlauberGribovXsc();
188 fElasticXsc = fHadrNucl->GetElasticGlauberGribovXsc();
189 fInelasticXsc = fHadrNucl->GetInelasticGlauberGribovXsc();
190 fProductionXsc = fHadrNucl->GetProductionGlauberGribovXsc();
191 fDiffractionXsc = fHadrNucl->GetDiffractionGlauberGribovXsc();
192 return;
193 }
194 static const G4double cofInelastic = 2.4;
195 static const G4double cofTotal = 2.0;
196
197 G4double pTkin = kinEnergy/(G4double)pA;
198
199 G4int pN = pA - pZ;
200 G4int tN = A - Z;
201
203 G4double pR = G4NuclearRadii::Radius(pZ, pA);
204
205 if(pHN)
206 pR *= std::sqrt( pG4Pow->Z23( pA - pL ) + cHN*pG4Pow->Z23( pL ) )/pG4Pow->Z13(pA);
207
208 G4double cB = ComputeCoulombBarier(aParticle, kinEnergy, Z, A, pR, tR);
209
210 if ( cB > 0. )
211 {
212 G4double sigma = (pZ*Z+pN*tN)*fHNXsc->HadronNucleonXscNS(theProton, theProton, pTkin);
213 if(pHN) sigma += pL*A*fHNXsc->HadronNucleonXsc(theLambda, theProton, pTkin);
214 G4double ppInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
215
216 sigma += (pZ*tN+pN*Z)*fHNXsc->HadronNucleonXscNS(theNeutron, theProton, pTkin);
217 G4double npInXsc = fHNXsc->GetInelasticHadronNucleonXsc();
218
219 G4double nucleusSquare = cofTotal*CLHEP::pi*( pR*pR + tR*tR ); // basically 2piRR
220
221 G4double ratio= sigma/nucleusSquare;
222 fTotalXsc = nucleusSquare*G4Log( 1. + ratio )*cB;
223 fInelasticXsc = nucleusSquare*G4Log( 1. + cofInelastic*ratio )*cB/cofInelastic;
224 fElasticXsc = std::max(fTotalXsc - fInelasticXsc, 0.0);
225
226 G4double difratio = ratio/(1.+ratio);
227 fDiffractionXsc = 0.5*nucleusSquare*( difratio - G4Log( 1. + difratio ) );
228
229 G4double xratio= ((pZ*Z+pN*tN)*ppInXsc + (pZ*tN+pN*Z)*npInXsc)/nucleusSquare;
230 fProductionXsc = nucleusSquare*G4Log( 1. + cofInelastic*xratio)*cB/cofInelastic;
231 fProductionXsc = std::min(fProductionXsc, fInelasticXsc);
232 }
233 else
234 {
235 fInelasticXsc = fTotalXsc = fElasticXsc = fProductionXsc = fDiffractionXsc = 0.;
236 }
237}
238
239///////////////////////////////////////////////////////////////////////////////
240
242 const G4ParticleDefinition* aParticle,
243 G4double pTkin, G4int Z, G4int A,
244 G4double pR, G4double tR)
245{
246 G4int pZ = aParticle->GetPDGCharge()*inve;
247 G4double pM = aParticle->GetPDGMass();
249 G4double pElab = pTkin + pM;
250 G4double totEcm = std::sqrt(pM*pM + tM*tM + 2.*pElab*tM);
251 G4double totTcm = totEcm - pM -tM;
252
253 // 0.5 defines shape of Cross section correction
254 // at cB = totTcm it become zero
255 static const G4double qfact = 0.5*CLHEP::elm_coupling;
256 G4double bC = qfact*pZ*Z/(pR + tR);
257
258 G4double ratio = (totTcm <= bC) ? 0. : 1. - bC/totTcm;
259
260#ifdef G4VERBOSE
261 if (GetVerboseLevel() > 1) {
262 G4cout << "G4ComponentGGNuclNuclXsc::ComputeCoulombBarier(..)=" <<ratio
263 << "; pTkin(GeV)=" << pTkin/CLHEP::MeV
264 << " totTcm= " << totTcm/CLHEP::MeV<< "; bC=" << bC/CLHEP::MeV
265 << G4endl;
266 }
267#endif
268 return ratio;
269}
270
271//////////////////////////////////////////////////////////////////////////
272//
273// Return single-diffraction/inelastic cross-section ratio
274
276 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
277{
278 ComputeCrossSections(aParticle->GetDefinition(),
279 aParticle->GetKineticEnergy(),
280 G4lrint(tZ), G4lrint(tA));
281
282 return (fInelasticXsc > 0.0) ? fDiffractionXsc/fInelasticXsc : 0.0;
283}
284
285//////////////////////////////////////////////////////////////////////////
286//
287// Return quasi-elastic/inelastic cross-section ratio
288
290 const G4DynamicParticle* aParticle, G4double tA, G4double tZ)
291{
292 ComputeCrossSections(aParticle->GetDefinition(),
293 aParticle->GetKineticEnergy(),
294 G4lrint(tZ), G4lrint(tA));
295
296 return (fInelasticXsc > 0.0) ? 1.0 - fProductionXsc/fInelasticXsc : 0.0;
297}
298
299///////////////////////////////////////////////////////////////////////////////
G4double G4Log(G4double x)
Definition G4Log.hh:227
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
G4double GetTotalElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double ComputeQuasiElasticRatio(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double GetRatioQE(const G4DynamicParticle *, G4double At, G4double Zt)
G4double GetElasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4double GetRatioSD(const G4DynamicParticle *, G4double At, G4double Zt)
void DumpPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
G4double ComputeCoulombBarier(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A, G4double pR, G4double tR)
G4double GetTotalIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void Description(std::ostream &) const final
G4double GetElasticIsotopeCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4int A) final
void BuildPhysicsTable(const G4ParticleDefinition &) final
G4double GetInelasticElementCrossSection(const G4ParticleDefinition *aParticle, G4double kinEnergy, G4int Z, G4double A) final
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Lambda * Lambda()
Definition G4Lambda.cc:105
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
static G4double Radius(G4int Z, G4int A)
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetNumberOfLambdasInHypernucleus() const
G4bool IsHypernucleus() const
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double Z13(G4int Z) const
Definition G4Pow.hh:123
G4double Z23(G4int Z) const
Definition G4Pow.hh:125
static G4Proton * Proton()
Definition G4Proton.cc:90
G4VComponentCrossSection(const G4String &nam="")
int G4lrint(double ad)
Definition templates.hh:134