Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
GVFlashHomoShowerTuning.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28//
29// ---------------------------------------------------------------
30// GEANT 4 class header file
31//
32// GVFlashHomoShowerTuning
33//
34// Class description:
35//
36// Tuning class for GFlash homogeneous shower parameterisation.
37// Definitions:
38// <t>: shower center of gravity
39// T: Depth at shower maximum
40// Ec: Critical energy
41// X0: Radiation length
42// y = E/Ec
43//
44// Homogeneous media:
45// Average shower profile
46// (1/E)(dE(t)/dt) = f(t)
47// = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
48// where Gamma is the Gamma function
49//
50// <t> = alpha/beta
51// T = (alpha-1)/beta
52// and
53// T = ln(y) + t1
54// alpha = a1+(a2+a3/Z)ln(y)
55
56// Author: J.P. Wellisch - October 2004
57//
58// Usage: use new statement for new instance of class, do not delete.
59// The instance of class will be deleted in
60// GFlashHomoShowerParameterisation Destructor.
61
62//---------------------------------------------------------------
63#ifndef GVFlashHomoShowerTuning_hh
64#define GVFlashHomoShowerTuning_hh
65
66#include "G4Types.hh"
67
69{
70 public:
73
74 public: // with description
75 virtual G4double ParAveT1() { return -0.812; } // t1
76 virtual G4double ParAveA1() { return 0.81; } // a1
77 virtual G4double ParAveA2(){ return 0.458; } // a2
78 virtual G4double ParAveA3() { return 2.26; } // a3
79
80 virtual G4double ParSigLogT1() { return -1.4; } // t1
81 virtual G4double ParSigLogT2() { return 1.26; } // t2
82 // std::sqrt(var(ln(T))) = 1/(t+t2*ln(y))
83
84 virtual G4double ParSigLogA1(){ return -0.58; } // a1
85 virtual G4double ParSigLogA2(){ return 0.86; } // a2
86 // std::sqrt(var(ln(alpha))) = 1/(a1+a2*ln(y))
87
88 virtual G4double ParRho1(){ return 0.705; } // r1
89 virtual G4double ParRho2(){ return -0.023; } // r2
90 // Correlation(ln(T),ln(alpha))=r1+r2*ln(y)
91
92 // Radial profiles
93 // f(r) := (1/dE(t))(dE(t,r)/dr)
94 // Ansatz:
95 // f(r) = p(2*r*Rc**2)/(r**2+Rc**2)**2+(1-p)*(2*r*Rt**2)/(r**2+Rt**2)**2,
96 // 0<p<1
97
98 virtual G4double ParRC1(){ return 0.0251; } // c1
99 virtual G4double ParRC2(){ return 0.00319; } // c2
100 virtual G4double ParRC3(){ return 0.1162; } // c3
101 virtual G4double ParRC4(){ return -0.000381;} // c4
102 // Rc (t/T)= z1 +z2*t/T
103 // z1 = c1+c2*ln(E/GeV)
104 // z2 = c3+c4*Z
105
106 virtual G4double ParRT1(){ return 0.659; } // t1
107 virtual G4double ParRT2(){ return -0.00309;} // t2
108 virtual G4double ParRT3(){ return 0.645; } // k2
109 virtual G4double ParRT4(){ return -2.59; } // k3
110 virtual G4double ParRT5(){ return 0.3585; } // t5
111 virtual G4double ParRT6(){ return 0.0412; } // t6
112 // Rt (t/T)= k1*(std::exp(k3*(t/T-k2))+std::exp(k4*(t/T-k2)))
113 // k1 = t1+t2*Z
114 // k4 = t5+t6*ln(E/GeV)
115
116 virtual G4double ParWC1(){ return 2.632; } // c1
117 virtual G4double ParWC2(){ return -0.00094;} // c2
118 virtual G4double ParWC3(){ return 0.401; } // c3
119 virtual G4double ParWC4(){ return 0.00187; } // c4
120 virtual G4double ParWC5(){ return 1.313; } // c5
121 virtual G4double ParWC6(){ return -0.0686; } // c6
122 // p(t/T) = p1*std::exp((p2-t/T)/p3 - std::exp((p2-t/T)/p3))
123 // p1 = c1+c2*Z
124 // p2 = c3+c4*Z
125 // p3 = c5 + c6*ln(E/GeV)
126
127 virtual G4double ParSpotN1(){ return 93.; } // n1
128 virtual G4double ParSpotN2(){ return 0.876;} // n2
129 // Fluctuations on radial profiles through number of spots
130 // The total number of spots needed for a shower is
131 // Ns = n1*ln(Z)(E/GeV)**n2
132
133 // The number of spots per longitudinal interval is:
134 // (1/Ns)(dNs(t)/dt) = f(t)
135 // = (beta*t)**(alpha-1)*beta*std::exp(-beta*t)/Gamma(alpha)
136 // <t> = alpha_s/beta_s
137 // Ts = (alpha_s-1)/beta_s
138 // and
139 // Ts = T*(t1+t2*Z)
140 // alpha_s = alpha*(a1+a2*Z)
141
142 virtual G4double ParSpotT1(){ return 0.698; } // t1
143 virtual G4double ParSpotT2() { return 0.00212; } // t2
144
145 virtual G4double ParSpotA1() { return 0.639; } // a1
146 virtual G4double ParSpotA2() { return 0.00334; } // a2
147};
148
149#endif
double G4double
Definition G4Types.hh:83