Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ChargeExchange.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4 Model: Charge and strangness exchange based on G4LightMedia model
27// 28 May 2006 V.Ivanchenko
28//
29// Modified:
30// 07-Jun-06 V.Ivanchenko fix problem of rotation of final state
31// 25-Jul-06 V.Ivanchenko add 19 MeV low energy, below which S-wave is sampled
32// 12-Jun-12 A.Ribon fix warnings of shadowed variables
33// 06-Aug-15 A.Ribon migrating to G4Exp, G4Log and G4Pow
34//
35
36#include "G4ChargeExchange.hh"
37#include "G4ChargeExchangeXS.hh"
39#include "G4SystemOfUnits.hh"
40#include "G4ParticleTable.hh"
42#include "G4IonTable.hh"
43#include "Randomize.hh"
44#include "G4NucleiProperties.hh"
45#include "G4DecayTable.hh"
46#include "G4VDecayChannel.hh"
47#include "G4DecayProducts.hh"
48#include "G4NistManager.hh"
49#include "G4Fragment.hh"
52
53#include "G4Exp.hh"
54#include "G4Log.hh"
55#include "G4Pow.hh"
56
59
60namespace
61{
62 constexpr G4int maxN = 1000;
63 constexpr G4double emin = 2*136.9*CLHEP::MeV;
64}
65
67 : G4HadronicInteraction("ChargeExchange"),
68 fXSection(ptr), fXSWeightFactor(1.0)
69{
70 lowEnergyLimit = 1.*CLHEP::MeV;
71 secID = G4PhysicsModelCatalog::GetModelID( "model_ChargeExchange" );
73 fHandler = new G4ExcitationHandler();
74 if (nullptr != fXSection) {
75 fXSWeightFactor = 1.0/fXSection->GetCrossSectionFactor();
76 }
77}
78
80{
81 delete fHandler;
82}
83
85 const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
86{
87 theParticleChange.Clear();
88 auto part = aTrack.GetDefinition();
89 G4double ekin = aTrack.GetKineticEnergy();
90
91 G4int A = targetNucleus.GetA_asInt();
92 G4int Z = targetNucleus.GetZ_asInt();
93
94 if (ekin <= lowEnergyLimit) {
95 return &theParticleChange;
96 }
97 theParticleChange.SetWeightChange(fXSWeightFactor);
98
99 G4int projPDG = part->GetPDGEncoding();
100
101 // for hydrogen targets and positive projectile change exchange
102 // is not possible on proton, only on deuteron
103 if (1 == Z && (211 == projPDG || 321 == projPDG)) { A = 2; }
104
105 if (verboseLevel > 1)
106 G4cout << "G4ChargeExchange for " << part->GetParticleName()
107 << " PDGcode= " << projPDG << " on nucleus Z= " << Z
108 << " A= " << A << " N= " << A - Z
109 << G4endl;
110
112 G4LorentzVector lv0 = aTrack.Get4Momentum();
113 G4double etot = mass1 + lv0.e();
114
115 // select final state
116 const G4ParticleDefinition* theSecondary =
117 fXSection->SampleSecondaryType(part, Z, A);
118 G4int pdg = theSecondary->GetPDGEncoding();
119
120 // omega(782) and f2(1270)
121 G4bool isShortLived = (pdg == 223 || pdg == 225);
122
123 // atomic number of the recoil nucleus
124 if (projPDG == -211) { --Z; }
125 else if (projPDG == 211) { ++Z; }
126 else if (projPDG == -321) { --Z; }
127 else if (projPDG == 321) { ++Z; }
128 else if (projPDG == 130) {
129 if (theSecondary->GetPDGCharge() > 0.0) { --Z; }
130 else { ++Z; }
131 } else {
132 // not ready for other projectile
133 return &theParticleChange;
134 }
135
136 // recoil nucleus
137 const G4ParticleDefinition* theRecoil = nullptr;
138 if (Z == 0 && A == 1) { theRecoil = G4Neutron::Neutron(); }
139 else if (Z == 1 && A == 1) { theRecoil = G4Proton::Proton(); }
140 else if (Z == 1 && A == 2) { theRecoil = G4Deuteron::Deuteron(); }
141 else if (Z == 1 && A == 3) { theRecoil = G4Triton::Triton(); }
142 else if (Z == 2 && A == 3) { theRecoil = G4He3::He3(); }
143 else if (Z == 2 && A == 4) { theRecoil = G4Alpha::Alpha(); }
144 else if (nist->GetIsotopeAbundance(Z, A) > 0.0) {
146 ->GetIonTable()->GetIon(Z, A, 0.0);
147 }
148
149 // check if there is enough energy for the final state
150 // and sample mass of produced state
151 const G4double mass0 = theSecondary->GetPDGMass();
152 G4double mass3 = (nullptr == theRecoil) ?
154 G4double mass2 = mass0;
155 if (isShortLived &&
156 !SampleMass(mass2, theSecondary->GetPDGWidth(), etot - mass3)) {
157 return &theParticleChange;
158 }
159
160 // not possible kinematically
161 if (etot <= mass2 + mass3) {
162 return &theParticleChange;
163 }
164
165 // sample kinematics
166 G4LorentzVector lv1(0.0, 0.0, 0.0, mass1);
167 G4LorentzVector lv = lv0 + lv1;
168 G4ThreeVector bst = lv.boostVector();
169 G4double ss = lv.mag2();
170
171 // tmax = 4*momCMS^2
172 G4double e2 = ss + mass2*mass2 - mass3*mass3;
173 G4double tmax = e2*e2/ss - 4*mass2*mass2;
174
175 G4double t = SampleT(theSecondary, A, tmax);
176
177 G4double phi = G4UniformRand()*CLHEP::twopi;
178 G4double cost = 1. - 2.0*t/tmax;
179
180 if (cost > 1.0) { cost = 1.0; }
181 else if(cost < -1.0) { cost = -1.0; }
182
183 G4double sint = std::sqrt((1.0-cost)*(1.0+cost));
184
185 if (verboseLevel>1) {
186 G4cout << " t= " << t << " tmax(GeV^2)= " << tmax/(GeV*GeV)
187 << " cos(t)=" << cost << " sin(t)=" << sint << G4endl;
188 }
189 G4double momentumCMS = 0.5*std::sqrt(tmax);
190 G4LorentzVector lv2(momentumCMS*sint*std::cos(phi),
191 momentumCMS*sint*std::sin(phi),
192 momentumCMS*cost,
193 std::sqrt(momentumCMS*momentumCMS + mass2*mass2));
194
195 // kinematics in the final state, may be a warning should be added if
196 lv2.boost(bst);
197 if (lv2.e() < mass2) {
198 lv2.setE(mass2);
199 }
200 lv -= lv2;
201 if (lv.e() < mass3) {
202 lv.setE(mass3);
203 }
204
205 // prepare secondary particles
206 theParticleChange.SetStatusChange(stopAndKill);
207 theParticleChange.SetEnergyChange(0.0);
208
209 if (!isShortLived) {
210 auto aSec = new G4DynamicParticle(theSecondary, lv2);
211 theParticleChange.AddSecondary(aSec, secID);
212 } else {
213 auto channel = theSecondary->GetDecayTable()->SelectADecayChannel(mass2);
214 auto products = channel->DecayIt(mass2);
215 G4ThreeVector bst1 = lv2.boostVector();
216 G4int N = products->entries();
217 for (G4int i=0; i<N; ++i) {
218 auto p = (*products)[i];
219 auto lvp = p->Get4Momentum();
220 lvp.boost(bst1);
221 p->Set4Momentum(lvp);
222 theParticleChange.AddSecondary(p, secID);
223 }
224 delete products;
225 }
226
227 // recoil is a stable isotope
228 if (nullptr != theRecoil) {
229 auto aRec = new G4DynamicParticle(theRecoil, lv);
230 theParticleChange.AddSecondary(aRec, secID);
231 } else {
232 // recoil is an unstable fragment
233 G4Fragment frag(A, Z, lv);
234 auto products = fHandler->BreakItUp(frag);
235 for (auto & prod : *products) {
236 auto dp = new G4DynamicParticle(prod->GetDefinition(), prod->GetMomentum());
237 theParticleChange.AddSecondary(dp, secID);
238 delete prod;
239 }
240 delete products;
241 }
242 return &theParticleChange;
243}
244
246 const G4int A, const G4double tmax) const
247{
248 G4double aa, bb, cc, dd;
249 G4Pow* g4pow = G4Pow::GetInstance();
250 if (A <= 62.) {
251 aa = g4pow->powZ(A, 1.63);
252 bb = 14.5*g4pow->powZ(A, 0.66);
253 cc = 1.4*g4pow->powZ(A, 0.33);
254 dd = 10.;
255 } else {
256 aa = g4pow->powZ(A, 1.33);
257 bb = 60.*g4pow->powZ(A, 0.33);
258 cc = 0.4*g4pow->powZ(A, 0.40);
259 dd = 10.;
260 }
261 G4double x1 = (1.0 - G4Exp(-tmax*bb))*aa/bb;
262 G4double x2 = (1.0 - G4Exp(-tmax*dd))*cc/dd;
263
264 G4double t;
265 G4double y = bb;
266 if(G4UniformRand()*(x1 + x2) < x2) y = dd;
267
268 for (G4int i=0; i<maxN; ++i) {
269 t = -G4Log(G4UniformRand())/y;
270 if (t <= tmax) { return t; }
271 }
272 return 0.0;
273}
274
275G4bool G4ChargeExchange::SampleMass(G4double& M, const G4double G, const G4double elim)
276{
277 // +- 4 width but above 2 pion mass
278 const G4double e1 = std::max(M - 4*G, emin);
279 const G4double e2 = std::min(M + 4*G, elim) - e1;
280 if (e2 <= 0.0) { return false; }
281 const G4double M2 = M*M;
282 const G4double MG2 = M2*G*G;
283
284 // sampling Breit-Wigner function
285 for (G4int i=0; i<maxN; ++i) {
286 G4double e = e1 + e2*G4UniformRand();
287 G4double x = e*e - M2;
288 G4double y = MG2/(x*x + MG2);
289 if (y >= G4UniformRand()) {
290 M = e;
291 return true;
292 }
293 }
294 return false;
295}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition G4Exp.hh:180
@ stopAndKill
G4double G4Log(G4double x)
Definition G4Log.hh:227
CLHEP::HepLorentzVector G4LorentzVector
#define M(row, col)
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition G4Types.hh:83
bool G4bool
Definition G4Types.hh:86
int G4int
Definition G4Types.hh:85
const G4double A[17]
#define G4endl
Definition G4ios.hh:67
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition Randomize.hh:52
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
static G4Alpha * Alpha()
Definition G4Alpha.cc:83
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus) override
G4ChargeExchange(G4ChargeExchangeXS *)
G4double SampleT(const G4ParticleDefinition *theSec, const G4int A, const G4double tmax) const
~G4ChargeExchange() override
G4VDecayChannel * SelectADecayChannel(G4double parentMass=-1.)
static G4Deuteron * Deuteron()
Definition G4Deuteron.cc:90
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4HadronicInteraction(const G4String &modelName="HadronicModel")
static G4He3 * He3()
Definition G4He3.cc:90
G4ParticleDefinition * GetIon(G4int Z, G4int A, G4int lvl=0)
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
static G4NistManager * Instance()
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
G4DecayTable * GetDecayTable() const
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
static G4int GetModelID(const G4int modelIndex)
Definition G4Pow.hh:49
static G4Pow * GetInstance()
Definition G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition G4Pow.hh:225
static G4Proton * Proton()
Definition G4Proton.cc:90
static G4Triton * Triton()
Definition G4Triton.cc:90
virtual G4DecayProducts * DecayIt(G4double parentMass=-1.0)=0
#define N
Definition crc32.c:57