68 excTolerance(tolerance), inputEkin(0.),
69 recoilA(0), recoilZ(0), excitationEnergy(0.) {
84 G4cout <<
" >>> G4CascadeRecoilMaker::collide" <<
G4endl;
90 balance->collide(bullet, target, output);
99 const std::vector<G4CascadParticle>& cparticles) {
101 G4cout <<
" >>> G4CascadeRecoilMaker::collide(<EP>,<CP>)" <<
G4endl;
107 balance->collide(bullet, target, output, cparticles);
116 recoilZ = -(balance->deltaQ());
117 recoilA = -(balance->deltaB());
118 recoilMomentum = -(balance->deltaLV());
124 else excitationEnergy =
deltaM() * GeV;
127 if (std::abs(excitationEnergy) < excTolerance) excitationEnergy = 0.;
130 G4cout <<
" recoil px " << recoilMomentum.px()
131 <<
" py " << recoilMomentum.py() <<
" pz " << recoilMomentum.pz()
132 <<
" E " << recoilMomentum.e() <<
" baryon " << recoilA
133 <<
" charge " << recoilZ
134 <<
"\n recoil mass " << recoilMomentum.m()
135 <<
" 'excitation' energy " << excitationEnergy <<
G4endl;
145 G4cout <<
" >>> G4CascadeRecoilMaker::makeRecoilNuclei" <<
G4endl;
154 theRecoilNuclei.fill(recoilMomentum, recoilA, recoilZ,
155 excitationEnergy, model);
156 theRecoilNuclei.setExitonConfiguration(theExcitons);
158 return &theRecoilNuclei;
166 G4cout <<
" >>> G4CascadeRecoilMaker::makeRecoilFragment" <<
G4endl;
175 theRecoilFragment.SetZandA_asInt(recoilZ, recoilA);
182 theRecoilFragment.SetMomentum(fragMom*GeV);
186 G4int nholes = theExcitons.protonHoles+theExcitons.neutronHoles;
187 theRecoilFragment.SetNumberOfHoles(nholes, theExcitons.protonHoles);
189 G4int nexcit = (theExcitons.protonQuasiParticles
190 + theExcitons.neutronQuasiParticles);
191 theRecoilFragment.SetNumberOfExcitedParticle(nexcit,
192 theExcitons.protonQuasiParticles);
194 return &theRecoilFragment;
202 return (recoilMomentum.m() - nucMass);
209 return (recoilA>0 && recoilZ>=0 && recoilA >= recoilZ);
213 return (
goodFragment() && excitationEnergy > -excTolerance);
218 G4cout <<
" >>> G4CascadeRecoilMaker::wholeEvent:"
219 <<
" A " << recoilA <<
" Z " << recoilZ
220 <<
" P " << recoilMomentum.rho() <<
" E " << recoilMomentum.e()
221 <<
"\n wholeEvent returns "
222 << (recoilA==0 && recoilZ==0 &&
223 recoilMomentum.rho() < excTolerance/GeV &&
224 std::abs(recoilMomentum.e()) < excTolerance/GeV) <<
G4endl;
227 return (recoilA==0 && recoilZ==0 &&
228 recoilMomentum.rho() < excTolerance/GeV &&
229 std::abs(recoilMomentum.e()) < excTolerance/GeV);
236 G4cout <<
" >>> G4CascadeRecoilMaker::goodNucleus" <<
G4endl;
239 const G4double minExcitation = 0.1*keV;
240 const G4double reasonableExcitation = 7.0;
241 const G4double fractionalExcitation = 0.2;
246 else if (excitationEnergy < -excTolerance)
247 G4cerr <<
" goodNucleus: negative excitation" <<
G4endl;
252 if (excitationEnergy <= minExcitation)
return true;
256 G4double exc_max0z = fractionalExcitation * inputEkin*GeV;
257 G4double exc_dm = reasonableExcitation * dm;
258 G4double exc_max = (exc_max0z > exc_dm) ? exc_max0z : exc_dm;
261 G4cout <<
" eexs " << excitationEnergy <<
" max " << exc_max
262 <<
" dm " << dm <<
G4endl;
266 G4cerr <<
" goodNucleus: too much excitation" <<
G4endl;
268 return (excitationEnergy < exc_max);
CLHEP::HepLorentzVector G4LorentzVector
G4GLOB_DLL std::ostream G4cerr
G4GLOB_DLL std::ostream G4cout
void setVectM(const Hep3Vector &spatial, double mass)
G4bool wholeEvent() const
virtual ~G4CascadeRecoilMaker()
void collide(G4InuclParticle *bullet, G4InuclParticle *target, G4CollisionOutput &output)
G4bool goodNucleus() const
G4InuclNuclei * makeRecoilNuclei(G4InuclParticle::Model model=G4InuclParticle::DefaultModel)
G4Fragment * makeRecoilFragment()
G4bool goodRecoil() const
G4bool goodFragment() const
G4CascadeRecoilMaker(G4double tolerance=0.001 *CLHEP::MeV)
G4double getNucleiMass() const
G4double getKineticEnergy() const
G4VCascadeCollider(const G4String &name, G4int verbose=0)
G4double bindingEnergy(G4int A, G4int Z)