Geant4 11.3.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ParticleHPInelasticURR.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// Geant4 source file
30//
31// File name: G4ParticleHPInelasticURR.cc
32//
33// Authors: Marek Zmeskal (CTU, Czech Technical University in Prague, Czech Republic)
34// Loic Thulliez (CEA France)
35//
36// Creation date: 4 June 2024
37//
38// Description: Class to handle URR range, can be omitted once
39// the proper isotope cross-section is stored in
40// ParticleHP.
41//
42// Modifications:
43//
44// -------------------------------------------------------------------
45//
46//
47
54#include "G4SystemOfUnits.hh"
55#include "G4Threading.hh"
56
57
59 SetMinEnergy( 0.0 * CLHEP::eV );
60 SetMaxEnergy( 20.0 * CLHEP::MeV );
61 particleHPinelastic = new G4ParticleHPInelastic( G4Neutron::Neutron(), "NeutronHPInelastic" );
62}
63
64
66
67
69 if ( doNOTusePTforInelastic ) {
70 return particleHPinelastic->ApplyYourself( aTrack, aNucleus );
71 }
72 const G4Material* theMaterial = aTrack.GetMaterial();
73 G4double kineticEnergy = aTrack.GetKineticEnergy();
74 G4HadFinalState* theFinalState = nullptr;
75 if ( kineticEnergy < (*URRlimits).back().first || kineticEnergy > (*URRlimits).back().second ) {
76 return particleHPinelastic->ApplyYourself( aTrack, aNucleus );
77 }
78 G4int elementI = -1;
79 G4int isotopeJ = -1;
80 G4int A = aNucleus.GetA_asInt();
81 G4int Z = aNucleus.GetZ_asInt();
83 // finds the element and isotope of the selected target aNucleus
84 for ( G4int i = 0; i < (G4int)theMaterial->GetNumberOfElements(); ++i ) {
85 if ( Z == theMaterial->GetElement(i)->GetZasInt() ) {
86 for ( G4int j = 0; j < (G4int)theMaterial->GetElement(i)->GetNumberOfIsotopes(); ++j ) {
87 if ( A == theMaterial->GetElement(i)->GetIsotope(j)->GetN() ) {
88 isotopeJ = j;
89 break;
90 }
91 }
92 // the loop cannot be ended here because the material can have two elements with same Z but different isotopic composition
93 if ( isotopeJ != -1 ) {
94 // isotope was found and for loop is ended
95 elementI = (G4int)theMaterial->GetElement(i)->GetIndex();
96 break;
97 }
98 } // end if find element
99 } // end element loop
100 // Check whether the energy is out of the URR limits for the given element
101 if ( kineticEnergy < (*URRlimits).at(elementI).first || kineticEnergy > (*URRlimits).at(elementI).second ) {
102 // Call inelastic final state in G4ParicleHPChannel and SELECT ISOTOPE (to be improved in the future)
103 const G4Element* target_element = (*G4Element::GetElementTable())[elementI];
104 theFinalState = (*G4ParticleHPManager::GetInstance()->GetInelasticFinalStates( aTrack.GetDefinition() ))[elementI]
105 ->ApplyYourself( target_element, aTrack );
106 // Update target nucleus information according to the selected isotope
108 aNucleus.SetParameters( selectedIsotope_A, Z );
109 const G4Isotope* target_isotope = nullptr;
110 // Find the selected isotope among in the element
111 for ( G4int j = 0; j < (G4int)target_element->GetNumberOfIsotopes(); ++j ) {
112 target_isotope = target_element->GetIsotope(j);
113 if ( target_isotope->GetN() == selectedIsotope_A ) break;
114 }
115 aNucleus.SetIsotope( target_isotope );
116 } else {
117 // the energy is inside the limits of the URR and the isotope has to be found, calls the final state for the found element and isotope
118 theFinalState = (*G4ParticleHPManager::GetInstance()->GetInelasticFinalStates( aTrack.GetDefinition() ))[elementI]
119 ->ApplyYourself( isotopeJ, Z, A, aTrack );
120 }
122 return theFinalState;
123}
124
125
127 particleHPinelastic->BuildPhysicsTable( *(G4Neutron::Neutron()) );
128 if ( G4HadronicParameters::Instance()->GetTypeTablePT() == "njoy" ) {
129 doNOTusePTforInelastic = true;
130 } else if ( G4HadronicParameters::Instance()->GetTypeTablePT() == "calendf" ) {
131 doNOTusePTforInelastic = false;
132 // in the case of calendf probability tables, it sets the limits of the URR
134 if ( URRlimits == nullptr ) {
138 }
139 }
140}
141
142
143const std::pair< G4double, G4double > G4ParticleHPInelasticURR::GetFatalEnergyCheckLevels() const {
144 // max energy non-conservation is mass of heavy nucleus
145 return std::pair< G4double, G4double >( 10.0 * perCent, 350.0 * CLHEP::GeV );
146}
147
148
152
153
157
158
159void G4ParticleHPInelasticURR::ModelDescription( std::ostream& outFile ) const {
160 outFile << "High Precision model based on Evaluated Nuclear Data Files (ENDF) for Inelastic reaction of neutrons in the unresolved resonance region.";
161}
double G4double
Definition G4Types.hh:83
int G4int
Definition G4Types.hh:85
const G4double A[17]
std::size_t GetNumberOfIsotopes() const
Definition G4Element.hh:143
std::size_t GetIndex() const
Definition G4Element.hh:159
const G4Isotope * GetIsotope(G4int iso) const
Definition G4Element.hh:151
static const G4ElementTable * GetElementTable()
Definition G4Element.cc:401
G4int GetZasInt() const
Definition G4Element.hh:120
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
void SetMinEnergy(G4double anEnergy)
G4HadronicInteraction(const G4String &modelName="HadronicModel")
void SetMaxEnergy(const G4double anEnergy)
static G4HadronicParameters * Instance()
G4int GetN() const
Definition G4Isotope.hh:83
const G4Element * GetElement(G4int iel) const
std::size_t GetNumberOfElements() const
static G4Neutron * Neutron()
Definition G4Neutron.cc:101
G4int GetA_asInt() const
Definition G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition G4Nucleus.hh:105
void SetParameters(const G4double A, const G4double Z, const G4int numberOfLambdas=0)
Definition G4Nucleus.cc:319
void SetIsotope(const G4Isotope *iso)
Definition G4Nucleus.hh:114
void BuildPhysicsTable(const G4ParticleDefinition &)
virtual const std::pair< G4double, G4double > GetFatalEnergyCheckLevels() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
virtual void ModelDescription(std::ostream &outFile) const
std::vector< std::pair< G4double, G4double > > * GetURRlimits() const
void RegisterURRlimits(std::vector< std::pair< G4double, G4double > > *val)
std::vector< G4ParticleHPChannelList * > * GetInelasticFinalStates(const G4ParticleDefinition *part) const
static G4ParticleHPManager * GetInstance()
G4ParticleHPReactionWhiteBoard * GetReactionWhiteBoard()
static G4ParticleHPProbabilityTablesStore * GetInstance()
std::vector< std::pair< G4double, G4double > > * GetURRlimits()