43 nonzero_histories.clear();
44 largest_scores.clear();
45 largest_scores.push_back(0.0);
47 history_grid.resize(noBinOfHistory, 0);
48 mean_history.resize(noBinOfHistory, 0.0);
49 var_history.resize(noBinOfHistory, 0.0);
50 sd_history.resize(noBinOfHistory, 0.0);
51 r_history.resize(noBinOfHistory, 0.0);
52 vov_history.resize(noBinOfHistory, 0.0);
53 fom_history.resize(noBinOfHistory, 0.0);
54 shift_history.resize(noBinOfHistory, 0.0);
55 e_history.resize(noBinOfHistory, 0.0);
56 r2eff_history.resize(noBinOfHistory, 0.0);
57 r2int_history.resize(noBinOfHistory, 0.0);
62 cpu_time.push_back(0.0);
75 cpu_time.push_back(timer->GetSystemElapsed() + timer->GetUserElapsed());
79 std::ostringstream message;
80 message <<
"Expecting zero or positive number as inputs,\n"
81 <<
"but received a negative number.";
82 G4Exception(
"G4ConvergenceTester::AddScore()",
"Warning",
91 nonzero_histories.insert(std::pair<G4int, G4double>(n, x));
92 if(x > largest_scores.back())
95 for(
auto it = largest_scores.begin(); it != largest_scores.end(); ++it)
99 largest_scores.insert(it, x);
104 if(largest_scores.size() > 201)
106 largest_scores.pop_back();
113 statsAreUpdated =
false;
119void G4ConvergenceTester::calStat()
123 efficiency =
G4double(nonzero_histories.size()) / n;
133 for(
const auto& nonzero_historie : nonzero_histories)
135 xi = nonzero_historie.second;
137 var += (xi - mean) * (xi - mean);
138 shift += (xi - mean) * (xi - mean) * (xi - mean);
139 vov += (xi - mean) * (xi - mean) * (xi - mean) * (xi - mean);
142 var += (n - nonzero_histories.size()) * mean * mean;
143 shift += (n - nonzero_histories.size()) * mean * mean * mean * (-1);
144 vov += (n - nonzero_histories.size()) * mean * mean * mean * mean;
148 vov = vov / (var * var) - 1.0 / n;
154 r = sd / mean / std::sqrt(
G4double(n));
156 r2eff = (1 - efficiency) / (efficiency * n);
157 r2int = sum_x2 / (sum * sum) - 1 / (efficiency * n);
159 shift = shift / (2 * var * n);
161 fom = 1 / (r * r) / cpu_time.back();
167 largest_score_happened = 0;
168 G4double spend_time_of_largest = 0.0;
169 for(
const auto& nonzero_historie : nonzero_histories)
171 if(std::abs(nonzero_historie.second) > largest)
173 largest = nonzero_historie.second;
174 largest_score_happened = nonzero_historie.first;
175 spend_time_of_largest =
176 cpu_time[nonzero_historie.first + 1] - cpu_time[nonzero_historie.first];
188 mean_1 = (sum + largest) / (n + 1);
190 for(
const auto& nonzero_historie : nonzero_histories)
192 xi = nonzero_historie.second;
193 var_1 += (xi - mean_1) * (xi - mean_1);
194 shift_1 += (xi - mean_1) * (xi - mean_1) * (xi - mean_1);
195 vov_1 += (xi - mean_1) * (xi - mean_1) * (xi - mean_1) * (xi - mean_1);
198 var_1 += (xi - mean_1) * (xi - mean_1);
199 shift_1 += (xi - mean_1) * (xi - mean_1) * (xi - mean_1);
200 vov_1 += (xi - mean_1) * (xi - mean_1) * (xi - mean_1) * (xi - mean_1);
202 var_1 += (n - nonzero_histories.size()) * mean_1 * mean_1;
206 shift_1 += (n - nonzero_histories.size()) * mean_1 * mean_1 * mean_1 * (-1);
207 vov_1 += (n - nonzero_histories.size()) * mean_1 * mean_1 * mean_1 * mean_1;
209 vov_1 = vov_1 / (var_1 * var_1) - 1.0 / (n + 1);
213 sd_1 = std::sqrt(var_1);
215 r_1 = sd_1 / mean_1 / std::sqrt(
G4double(n + 1));
217 shift_1 = shift_1 / (2 * var_1 * (n + 1));
219 fom_1 = 1 / (r * r) / (cpu_time.back() + spend_time_of_largest);
222 if(nonzero_histories.size() < 500)
228 auto i =
G4int(nonzero_histories.size());
231 auto j =
G4int(i * 0.05);
232 while(
G4int(largest_scores.size()) > j)
234 largest_scores.pop_back();
236 calc_slope_fit(largest_scores);
239 calc_grid_point_of_history();
244 statsAreUpdated =
true;
247void G4ConvergenceTester::calc_grid_point_of_history()
254 for(
G4int i = 1; i <= noBinOfHistory; ++i)
256 history_grid[i - 1] =
G4int(n / (
G4double(noBinOfHistory)) * i - 0.1);
260void G4ConvergenceTester::calc_stat_history()
262 if(history_grid[0] == 0)
268 for(
G4int i = 0; i < noBinOfHistory; ++i)
270 G4int ith = history_grid[i];
272 G4int nonzero_till_ith = 0;
276 for(
const auto& itr : nonzero_histories)
286 if(nonzero_till_ith == 0)
291 mean_till_ith = mean_till_ith / (ith + 1);
292 mean_history[i] = mean_till_ith;
299 for(
const auto& itr : nonzero_histories)
304 sum_x2_till_ith += std::pow(xi, 2.0);
305 var_till_ith += std::pow(xi - mean_till_ith, 2.0);
306 shift_till_ith += std::pow(xi - mean_till_ith, 3.0);
307 vov_till_ith += std::pow(xi - mean_till_ith, 4.0);
312 ((ith + 1) - nonzero_till_ith) * std::pow(mean_till_ith, 2.0);
314 ((ith + 1) - nonzero_till_ith) * std::pow(mean_till_ith, 4.0);
316 G4double sum_till_ith = mean_till_ith * (ith + 1);
318 if(!(std::fabs(var_till_ith) > 0.0))
322 if(!(std::fabs(mean_till_ith) > 0.0))
326 if(!(std::fabs(sum_till_ith) > 0.0))
331 vov_till_ith = vov_till_ith / std::pow(var_till_ith, 2.0) - 1.0 / (ith + 1);
332 vov_history[i] = vov_till_ith;
334 var_till_ith = var_till_ith / (ith + 1 - 1);
335 var_history[i] = var_till_ith;
336 sd_history[i] = std::sqrt(var_till_ith);
338 std::sqrt(var_till_ith) / mean_till_ith / std::sqrt(1.0 * (ith + 1));
340 if(std::fabs(cpu_time[ith]) > 0.0 && std::fabs(r_history[i]) > 0.0)
342 fom_history[i] = 1.0 / std::pow(r_history[i], 2.0) / cpu_time[ith];
346 fom_history[i] = 0.0;
350 ((ith + 1) - nonzero_till_ith) * std::pow(mean_till_ith, 3.0) * (-1.0);
351 shift_till_ith = shift_till_ith / (2 * var_till_ith * (ith + 1));
352 shift_history[i] = shift_till_ith;
354 e_history[i] = 1.0 * nonzero_till_ith / (ith + 1);
355 if(std::fabs(e_history[i]) > 0.0)
357 r2eff_history[i] = (1 - e_history[i]) / (e_history[i] * (ith + 1));
359 r2int_history[i] = (sum_x2_till_ith) / std::pow(sum_till_ith, 2.0) -
360 1 / (e_history[i] * (ith + 1));
374 out << std::setprecision(6);
377 out <<
"G4ConvergenceTester Output Result of " << name <<
G4endl;
378 out << std::setw(20) <<
"EFFICIENCY = " << std::setw(13) << efficiency
380 out << std::setw(20) <<
"MEAN = " << std::setw(13) << mean <<
G4endl;
381 out << std::setw(20) <<
"VAR = " << std::setw(13) << var <<
G4endl;
382 out << std::setw(20) <<
"SD = " << std::setw(13) << sd <<
G4endl;
383 out << std::setw(20) <<
"R = " << std::setw(13) << r <<
G4endl;
384 out << std::setw(20) <<
"SHIFT = " << std::setw(13) << shift <<
G4endl;
385 out << std::setw(20) <<
"VOV = " << std::setw(13) << vov <<
G4endl;
386 out << std::setw(20) <<
"FOM = " << std::setw(13) << fom <<
G4endl;
388 out << std::setw(20) <<
"THE LARGEST SCORE = " << std::setw(13) << largest
389 <<
" and it happened at " << largest_score_happened <<
"th event"
393 out << std::setw(20) <<
"Affected Mean = " << std::setw(13) << mean_1
394 <<
" and its ratio to original is " << mean_1 / mean <<
G4endl;
398 out << std::setw(20) <<
"Affected Mean = " << std::setw(13) << mean_1
403 out << std::setw(20) <<
"Affected VAR = " << std::setw(13) << var_1
404 <<
" and its ratio to original is " << var_1 / var <<
G4endl;
408 out << std::setw(20) <<
"Affected VAR = " << std::setw(13) << var_1
413 out << std::setw(20) <<
"Affected R = " << std::setw(13) << r_1
414 <<
" and its ratio to original is " << r_1 / r <<
G4endl;
418 out << std::setw(20) <<
"Affected R = " << std::setw(13) << r_1 <<
G4endl;
422 out << std::setw(20) <<
"Affected SHIFT = " << std::setw(13) << shift_1
423 <<
" and its ratio to original is " << shift_1 / shift <<
G4endl;
427 out << std::setw(20) <<
"Affected SHIFT = " << std::setw(13) << shift_1
432 out << std::setw(20) <<
"Affected FOM = " << std::setw(13) << fom_1
433 <<
" and its ratio to original is " << fom_1 / fom <<
G4endl;
437 out << std::setw(20) <<
"Affected FOM = " << std::setw(13) << fom_1
443 out <<
"Number of events of this run is too small to do convergence tests."
448 check_stat_history(out);
456 out <<
"SLOPE is large enough" <<
G4endl;
460 out <<
"SLOPE is not large enough" <<
G4endl;
465 out <<
"Number of non zero history too small to calculate SLOPE" <<
G4endl;
468 out <<
"This result passes " << noPass <<
" / " << noTotal
469 <<
" Convergence Test." <<
G4endl;
477 out <<
"Number of events of this run is too small to show history."
482 out << std::setprecision(6);
485 out <<
"G4ConvergenceTester Output History of " << name <<
G4endl;
486 out <<
"i/" << noBinOfHistory <<
" till_ith mean" << std::setw(13)
487 <<
"var" << std::setw(13) <<
"sd" << std::setw(13) <<
"r" << std::setw(13)
488 <<
"vov" << std::setw(13) <<
"fom" << std::setw(13) <<
"shift"
489 << std::setw(13) <<
"e" << std::setw(13) <<
"r2eff" << std::setw(13)
491 for(
G4int i = 1; i <= noBinOfHistory; i++)
493 out << std::setw(4) << i <<
" " << std::setw(5) << history_grid[i - 1]
494 << std::setw(13) << mean_history[i - 1] << std::setw(13)
495 << var_history[i - 1] << std::setw(13) << sd_history[i - 1]
496 << std::setw(13) << r_history[i - 1] << std::setw(13)
497 << vov_history[i - 1] << std::setw(13) << fom_history[i - 1]
498 << std::setw(13) << shift_history[i - 1] << std::setw(13)
499 << e_history[i - 1] << std::setw(13) << r2eff_history[i - 1]
500 << std::setw(13) << r2int_history[i - 1] <<
G4endl;
504void G4ConvergenceTester::check_stat_history(std::ostream& out)
508 std::vector<G4double> first_ally;
509 std::vector<G4double> second_ally;
512 std::size_t
N = mean_history.size() / 2;
518 first_ally.resize(
N);
519 second_ally.resize(
N);
522 std::accumulate(var_history.begin(), var_history.end(), 0.0);
523 if(sum_of_var == 0.0)
525 out <<
"Variances in all historical grids are zero." <<
G4endl;
526 out <<
"Terminating checking behavior of statistics numbers." <<
G4endl;
532 for(i = 0; i <
N; ++i)
534 first_ally[i] = history_grid[
N + i];
535 second_ally[i] = mean_history[
N + i];
538 pearson_r = calc_Pearson_r((
G4int)
N, first_ally, second_ally);
539 t = pearson_r * std::sqrt((
N - 2) / (1 - pearson_r * pearson_r));
543 out <<
"MEAN distribution is RANDOM" <<
G4endl;
548 out <<
"MEAN distribution is not RANDOM" <<
G4endl;
553 for(i = 0; i <
N; ++i)
555 first_ally[i] = 1.0 / std::sqrt(
G4double(history_grid[
N + i]));
556 second_ally[i] = r_history[
N + i];
559 pearson_r = calc_Pearson_r(
G4int(
N), first_ally, second_ally);
560 t = pearson_r * std::sqrt((
N - 2) / (1 - pearson_r * pearson_r));
564 out <<
"r follows 1/std::sqrt(N)" <<
G4endl;
569 out <<
"r does not follow 1/std::sqrt(N)" <<
G4endl;
572 if(is_monotonically_decrease(second_ally))
574 out <<
"r is monotonically decrease " <<
G4endl;
578 out <<
"r is NOT monotonically decrease " <<
G4endl;
581 if(r_history.back() < 0.1)
583 out <<
"r is less than 0.1. r = " << r_history.back() <<
G4endl;
588 out <<
"r is NOT less than 0.1. r = " << r_history.back() <<
G4endl;
592 for(i = 0; i <
N; ++i)
594 first_ally[i] = 1.0 / history_grid[
N + i];
595 second_ally[i] = vov_history[
N + i];
598 pearson_r = calc_Pearson_r(
G4int(
N), first_ally, second_ally);
599 t = pearson_r * std::sqrt((
N - 2) / (1 - pearson_r * pearson_r));
603 out <<
"VOV follows 1/std::sqrt(N)" <<
G4endl;
608 out <<
"VOV does not follow 1/std::sqrt(N)" <<
G4endl;
611 if(is_monotonically_decrease(second_ally))
613 out <<
"VOV is monotonically decrease " <<
G4endl;
617 out <<
"VOV is NOT monotonically decrease " <<
G4endl;
622 for(i = 0; i <
N; ++i)
624 first_ally[i] = history_grid[
N + i];
625 second_ally[i] = fom_history[
N + i];
628 pearson_r = calc_Pearson_r(
G4int(
N), std::move(first_ally), std::move(second_ally));
629 t = pearson_r * std::sqrt((
N - 2) / (1 - pearson_r * pearson_r));
633 out <<
"FOM distribution is RANDOM" <<
G4endl;
638 out <<
"FOM distribution is not RANDOM" <<
G4endl;
643 std::vector<G4double> first_ally,
644 std::vector<G4double> second_ally)
650 for(i = 0; i <
N; i++)
652 first_mean += first_ally[i];
653 second_mean += second_ally[i];
655 first_mean = first_mean /
N;
656 second_mean = second_mean /
N;
659 for(i = 0; i <
N; ++i)
661 a += (first_ally[i] - first_mean) * (second_ally[i] - second_mean);
666 for(i = 0; i <
N; ++i)
668 b1 += (first_ally[i] - first_mean) * (first_ally[i] - first_mean);
669 b2 += (second_ally[i] - second_mean) * (second_ally[i] - second_mean);
672 G4double rds = a / std::sqrt(b1 * b2);
677G4bool G4ConvergenceTester::is_monotonically_decrease(
678 const std::vector<G4double>& ally)
680 for(
auto it = ally.cbegin(); it != ally.cend() - 1; ++it)
692void G4ConvergenceTester::calc_slope_fit(
const std::vector<G4double>&)
696 auto last =
G4int(largest_scores.size());
698 if(largest_scores.back() != 0)
700 min = largest_scores.back();
704 min = largest_scores[last - 1];
715 std::vector<G4double> pdf_grid;
717 pdf_grid.resize(noBinOfPDF + 1);
719 pdf_grid[noBinOfPDF] =
min;
720 G4double log10_max = std::log10(max);
721 G4double log10_min = std::log10(min);
722 G4double log10_delta = log10_max - log10_min;
723 for(
G4int i = 1; i < noBinOfPDF; ++i)
725 pdf_grid[i] = std::pow(10.0, log10_max - log10_delta / 10.0 * (i));
728 std::vector<G4double> pdf;
729 pdf.resize(noBinOfPDF);
731 for(
G4int j = 0; j < last; ++j)
733 for(
G4int i = 0; i < 11; ++i)
735 if(largest_scores[j] >= pdf_grid[i + 1])
737 pdf[i] += 1.0 / (pdf_grid[i] - pdf_grid[i + 1]) / n;
743 f_xi.resize(noBinOfPDF);
744 f_yi.resize(noBinOfPDF);
745 for(
G4int i = 0; i < noBinOfPDF; ++i)
747 f_xi[i] = (pdf_grid[i] + pdf_grid[i + 1]) / 2;
752 minimizer =
new G4SimplexDownhill<G4ConvergenceTester>(
this, 2);
754 std::vector<G4double> mp = minimizer->GetMinimumPoint();
762 slope = 1 / mp[1] + 1;
773G4double G4ConvergenceTester::slope_fitting_function(std::vector<G4double> x)
780 return 3.402823466e+38;
784 return 3.402823466e+38;
793 if((1 + k * f_xi[i] / a) < 0)
795 y += 3.402823466e+38;
799 y += (f_yi[i] - 1 / a * std::pow(1 + k * f_xi[i] / a, -1 / k - 1)) *
800 (f_yi[i] - 1 / a * std::pow(1 + k * f_xi[i] / a, -1 / k - 1));
G4TemplateAutoLock< G4Mutex > G4AutoLock
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
#define G4MUTEX_INITIALIZER
void ShowResult(std::ostream &out=G4cout)
void ShowHistory(std::ostream &out=G4cout)
G4ConvergenceTester(const G4String &theName="NONAME")
T max(const T t1, const T t2)
brief Return the largest of the two arguments
T min(const T t1, const T t2)
brief Return the smallest of the two arguments