#include <EvtVector3C.hh>
|
EvtVector3C | rotateEuler (const EvtVector3C &v, double phi, double theta, double ksi) |
|
EvtVector3C | operator* (const EvtComplex &c, const EvtVector3C &v2) |
|
EvtVector3C | operator* (const EvtComplex &c, const EvtVector3R &v2) |
|
EvtComplex | operator* (const EvtVector3R &v1, const EvtVector3C &v2) |
|
EvtComplex | operator* (const EvtVector3C &v1, const EvtVector3R &v2) |
|
EvtComplex | operator* (const EvtVector3C &v1, const EvtVector3C &v2) |
|
EvtVector3C | operator+ (const EvtVector3C &v1, const EvtVector3C &v2) |
|
EvtVector3C | operator- (const EvtVector3C &v1, const EvtVector3C &v2) |
|
EvtVector3C | operator* (const EvtVector3C &v1, const EvtComplex &c) |
|
std::ostream & | operator<< (std::ostream &c, const EvtVector3C &v) |
|
Definition at line 29 of file EvtVector3C.hh.
◆ EvtVector3C() [1/3]
EvtVector3C::EvtVector3C |
( |
| ) |
|
Definition at line 31 of file EvtVector3C.cc.
31 {
32
33 v[0]=EvtComplex(0.0); v[1]=EvtComplex(0.0); v[2]=EvtComplex(0.0);
34}
Referenced by conj(), cross(), dot(), operator*, operator*, operator*, operator*, operator*, operator*, operator*=(), operator+, operator+=(), operator-, operator-=(), operator/=(), operator<<, and rotateEuler.
◆ EvtVector3C() [2/3]
◆ ~EvtVector3C()
EvtVector3C::~EvtVector3C |
( |
| ) |
|
|
virtual |
◆ EvtVector3C() [3/3]
Definition at line 68 of file EvtVector3C.hh.
68 {
69
70 v[0]=EvtComplex(v1.
get(0),0.0);
71 v[1]=EvtComplex(v1.
get(1),0.0);
72 v[2]=EvtComplex(v1.
get(2),0.0);
73
74}
◆ applyRotateEuler()
void EvtVector3C::applyRotateEuler |
( |
double | phi, |
|
|
double | theta, |
|
|
double | ksi ) |
Definition at line 71 of file EvtVector3C.cc.
71 {
72
73 EvtComplex temp[3];
74 double sp,st,sk,cp,ct,ck;
75
82
83 temp[0]=( ck*ct*cp-sk*sp)*v[0]+( -sk*ct*cp-ck*sp)*v[1]+st*cp*v[2];
84 temp[1]=( ck*ct*sp+sk*cp)*v[0]+(-sk*ct*sp+ck*cp)*v[1]+st*sp*v[2];
85 temp[2]=-ck*st*v[0]+sk*st*v[1]+ct*v[2];
86
87
88 v[0]=temp[0];
89 v[1]=temp[1];
90 v[2]=temp[2];
91}
double sin(const BesAngle a)
double cos(const BesAngle a)
Referenced by rotateEuler.
◆ conj()
◆ cross()
Definition at line 48 of file EvtVector3C.cc.
48 {
49
50
51
53
54 temp.v[0] = v[1]*
p2.v[2] - v[2]*
p2.v[1];
55 temp.v[1] = v[2]*
p2.v[0] - v[0]*
p2.v[2];
56 temp.v[2] = v[0]*
p2.v[1] - v[1]*
p2.v[0];
57
58 return temp;
59}
◆ dot()
◆ get()
const EvtComplex & EvtVector3C::get |
( |
int | i | ) |
const |
|
inline |
◆ operator*=()
Definition at line 99 of file EvtVector3C.hh.
99 {
100
101 v[0]*=c;
102 v[1]*=c;
103 v[2]*=c;
104 return *this;
105}
◆ operator+=()
Definition at line 115 of file EvtVector3C.hh.
115 {
116
117 v[0]+=v2.v[0];
118 v[1]+=v2.v[1];
119 v[2]+=v2.v[2];
120 return *this;
121}
◆ operator-=()
Definition at line 123 of file EvtVector3C.hh.
123 {
124
125 v[0]-=v2.v[0];
126 v[1]-=v2.v[1];
127 v[2]-=v2.v[2];
128 return *this;
129}
◆ operator/=()
Definition at line 107 of file EvtVector3C.hh.
107 {
108
109 v[0]/=c;
110 v[1]/=c;
111 v[2]/=c;
112 return *this;
113}
◆ set() [1/3]
◆ set() [2/3]
void EvtVector3C::set |
( |
const int | i, |
|
|
const EvtComplex & | c ) |
|
inline |
◆ set() [3/3]
void EvtVector3C::set |
( |
double | x, |
|
|
double | y, |
|
|
double | z ) |
|
inline |
Definition at line 88 of file EvtVector3C.hh.
89 {
90
91 v[0]=EvtComplex(x); v[1]=EvtComplex(
y); v[2]=EvtComplex(z);
92}
◆ operator* [1/6]
◆ operator* [2/6]
◆ operator* [3/6]
◆ operator* [4/6]
Definition at line 166 of file EvtVector3C.hh.
166 {
167
168 return v1.v[0]*v2.v[0]+v1.v[1]*v2.v[1]+v1.v[2]*v2.v[2];
169}
◆ operator* [5/6]
◆ operator* [6/6]
◆ operator+
◆ operator-
◆ operator<<
std::ostream & operator<< |
( |
std::ostream & | c, |
|
|
const EvtVector3C & | v ) |
|
friend |
◆ rotateEuler
Definition at line 61 of file EvtVector3C.cc.
62 {
63
65 tmp.applyRotateEuler(
alpha,beta,gamma);
66 return tmp;
67
68}
The documentation for this class was generated from the following files: