Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4PolynomialSolver
27//
28// Class description:
29//
30// G4PolynomialSolver allows the user to solve a polynomial equation
31// with a great precision. This is used by Implicit Equation solver.
32//
33// The Bezier clipping method is used to solve the polynomial.
34//
35// How to use it:
36// Create a class that is the function to be solved.
37// This class could have internal parameters to allow to change
38// the equation to be solved without recreating a new one.
39//
40// Define a Polynomial solver, example:
41// G4PolynomialSolver<MyFunctionClass,G4double(MyFunctionClass::*)(G4double)>
42// PolySolver (&MyFunction,
43// &MyFunctionClass::Function,
44// &MyFunctionClass::Derivative,
45// precision);
46//
47// The precision is relative to the function to solve.
48//
49// In MyFunctionClass, provide the function to solve and its derivative:
50// Example of function to provide :
51//
52// x,y,z,dx,dy,dz,Rmin,Rmax are internal variables of MyFunctionClass
53//
54// G4double MyFunctionClass::Function(G4double value)
55// {
56// G4double Lx,Ly,Lz;
57// G4double result;
58//
59// Lx = x + value*dx;
60// Ly = y + value*dy;
61// Lz = z + value*dz;
62//
63// result = TorusEquation(Lx,Ly,Lz,Rmax,Rmin);
64//
65// return result ;
66// }
67//
68// G4double MyFunctionClass::Derivative(G4double value)
69// {
70// G4double Lx,Ly,Lz;
71// G4double result;
72//
73// Lx = x + value*dx;
74// Ly = y + value*dy;
75// Lz = z + value*dz;
76//
77// result = dx*TorusDerivativeX(Lx,Ly,Lz,Rmax,Rmin);
78// result += dy*TorusDerivativeY(Lx,Ly,Lz,Rmax,Rmin);
79// result += dz*TorusDerivativeZ(Lx,Ly,Lz,Rmax,Rmin);
80//
81// return result;
82// }
83//
84// Then to have a root inside an interval [IntervalMin,IntervalMax] do the
85// following:
86//
87// MyRoot = PolySolver.solve(IntervalMin,IntervalMax);
88
89// Author: E.Medernach, 19.12.2000 - First implementation
90// --------------------------------------------------------------------
91#ifndef G4POL_SOLVER_HH
92#define G4POL_SOLVER_HH 1
93
94#include "globals.hh"
95
96template <class T, class F>
98{
99 public:
100 G4PolynomialSolver(T* typeF, F func, F deriv, G4double precision);
102
103 G4double solve(G4double IntervalMin, G4double IntervalMax);
104
105 private:
106 G4double Newton(G4double IntervalMin, G4double IntervalMax);
107 // General Newton method with Bezier Clipping
108
109 // Works for polynomial of order less or equal than 4.
110 // But could be changed to work for polynomial of any order providing
111 // that we find the bezier control points.
112
113 G4int BezierClipping(G4double* IntervalMin, G4double* IntervalMax);
114 // This is just one iteration of Bezier Clipping
115
116 T* FunctionClass;
117 F Function;
118 F Derivative;
119
120 G4double Precision;
121};
122
123#include "G4PolynomialSolver.icc"
124
125#endif
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4PolynomialSolver(T *typeF, F func, F deriv, G4double precision)
G4double solve(G4double IntervalMin, G4double IntervalMax)