Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4mplIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class header file
30//
31//
32// File name: G4mplIonisationModel
33//
34// Author: Vladimir Ivanchenko
35//
36// Creation date: 06.09.2005
37//
38// Modifications:
39// 12.08.2007 Changing low energy approximation and extrapolation.
40// Small bug fixing and refactoring (M. Vladymyrov)
41// 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko)
42//
43//
44// -------------------------------------------------------------------
45// References
46// [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles,
47// S.P. Ahlen, Rev. Mod. Phys 52(1980), p121
48// [2] K.A. Milton arXiv:hep-ex/0602040
49// [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347
50
51
52//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
53//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
54
56#include "Randomize.hh"
58#include "G4SystemOfUnits.hh"
62#include "G4Log.hh"
63#include "G4Pow.hh"
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
66
67using namespace std;
68
69std::vector<G4double>* G4mplIonisationModel::dedx0 = nullptr;
70
73 magCharge(mCharge),
74 twoln10(log(100.0)),
75 betalow(0.01),
76 betalim(0.1),
77 beta2lim(betalim*betalim),
78 bg2lim(beta2lim*(1.0 + beta2lim))
79{
80 nmpl = G4int(abs(magCharge) * 2 * fine_structure_const + 0.5);
81 if(nmpl > 6) { nmpl = 6; }
82 else if(nmpl < 1) { nmpl = 1; }
83 pi_hbarc2_over_mc2 = pi * hbarc * hbarc / electron_mass_c2;
84 chargeSquare = magCharge * magCharge;
85 dedxlim = 45.*nmpl*nmpl*GeV*cm2/g;
86 fParticleChange = nullptr;
87 monopole = nullptr;
88 mass = 0.0;
89}
90
91//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
92
94{
95 if(IsMaster()) { delete dedx0; }
96}
97
98//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
99
101{
102 monopole = p;
103 mass = monopole->GetPDGMass();
104 G4double emin =
105 std::min(LowEnergyLimit(),0.1*mass*(1./sqrt(1. - betalow*betalow) - 1.));
106 G4double emax =
107 std::max(HighEnergyLimit(),10.*mass*(1./sqrt(1. - beta2lim) - 1.));
108 SetLowEnergyLimit(emin);
109 SetHighEnergyLimit(emax);
110}
111
112//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
113
115 const G4DataVector&)
116{
117 if(!monopole) { SetParticle(p); }
118 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
119 if(IsMaster()) {
120 if(!dedx0) { dedx0 = new std::vector<G4double>; }
121 G4ProductionCutsTable* theCoupleTable=
123 G4int numOfCouples = theCoupleTable->GetTableSize();
124 G4int n = dedx0->size();
125 if(n < numOfCouples) { dedx0->resize(numOfCouples); }
126
127 G4Pow* g4calc = G4Pow::GetInstance();
128
129 // initialise vector assuming low conductivity
130 for(G4int i=0; i<numOfCouples; ++i) {
131
132 const G4Material* material =
133 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
134 G4double eDensity = material->GetElectronDensity();
135 G4double vF2 = 2*electron_Compton_length*g4calc->A13(3.*pi*pi*eDensity);
136 (*dedx0)[i] = pi_hbarc2_over_mc2*eDensity*nmpl*nmpl*
137 (G4Log(vF2/fine_structure_const) - 0.5)/vF2;
138 }
139 }
140}
141
142//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143
145 const G4ParticleDefinition* p,
146 G4double kineticEnergy,
147 G4double)
148{
149 if(!monopole) { SetParticle(p); }
150 G4double tau = kineticEnergy / mass;
151 G4double gam = tau + 1.0;
152 G4double bg2 = tau * (tau + 2.0);
153 G4double beta2 = bg2 / (gam * gam);
154 G4double beta = sqrt(beta2);
155
156 // low-energy asymptotic formula
157 //G4double dedx = dedxlim*beta*material->GetDensity();
158 G4double dedx = (*dedx0)[CurrentCouple()->GetIndex()]*beta;
159
160 // above asymptotic
161 if(beta > betalow) {
162
163 // high energy
164 if(beta >= betalim) {
165 dedx = ComputeDEDXAhlen(material, bg2);
166
167 } else {
168
169 //G4double dedx1 = dedxlim*betalow*material->GetDensity();
170 G4double dedx1 = (*dedx0)[CurrentCouple()->GetIndex()]*betalow;
171 G4double dedx2 = ComputeDEDXAhlen(material, bg2lim);
172
173 // extrapolation between two formula
174 G4double kapa2 = beta - betalow;
175 G4double kapa1 = betalim - beta;
176 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2);
177 }
178 }
179 return dedx;
180}
181
182//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
183
184G4double G4mplIonisationModel::ComputeDEDXAhlen(const G4Material* material,
185 G4double bg2)
186{
187 G4double eDensity = material->GetElectronDensity();
188 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy();
189 G4double cden = material->GetIonisation()->GetCdensity();
190 G4double mden = material->GetIonisation()->GetMdensity();
191 G4double aden = material->GetIonisation()->GetAdensity();
192 G4double x0den = material->GetIonisation()->GetX0density();
193 G4double x1den = material->GetIonisation()->GetX1density();
194
195 // Ahlen's formula for nonconductors, [1]p157, f(5.7)
196 G4double dedx = log(2.0 * electron_mass_c2 * bg2 / eexc) - 0.5;
197
198 // Kazama et al. cross-section correction
199 G4double k = 0.406;
200 if(nmpl > 1) k = 0.346;
201
202 // Bloch correction
203 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685};
204
205 dedx += 0.5 * k - B[nmpl];
206
207 // density effect correction
208 G4double deltam;
209 G4double x = log(bg2) / twoln10;
210 if ( x >= x0den ) {
211 deltam = twoln10 * x - cden;
212 if ( x < x1den ) deltam += aden * pow((x1den-x), mden);
213 dedx -= 0.5 * deltam;
214 }
215
216 // now compute the total ionization loss
217 dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl;
218
219 if (dedx < 0.0) dedx = 0.;
220 return dedx;
221}
222
223//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
224
225void G4mplIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*,
227 const G4DynamicParticle*,
228 G4double,
229 G4double)
230{}
231
232//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
233
235 const G4MaterialCutsCouple* couple,
236 const G4DynamicParticle* dp,
237 G4double tmax,
238 G4double length,
239 G4double meanLoss)
240{
241 G4double siga = Dispersion(couple->GetMaterial(),dp,tmax,length);
242 G4double loss = meanLoss;
243 siga = sqrt(siga);
244 G4double twomeanLoss = meanLoss + meanLoss;
245
246 if(twomeanLoss < siga) {
247 G4double x;
248 do {
249 loss = twomeanLoss*G4UniformRand();
250 x = (loss - meanLoss)/siga;
251 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
252 } while (1.0 - 0.5*x*x < G4UniformRand());
253 } else {
254 do {
255 loss = G4RandGauss::shoot(meanLoss,siga);
256 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
257 } while (0.0 > loss || loss > twomeanLoss);
258 }
259 return loss;
260}
261
262//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
263
265 const G4DynamicParticle* dp,
266 G4double tmax,
267 G4double length)
268{
269 G4double siga = 0.0;
270 G4double tau = dp->GetKineticEnergy()/mass;
271 if(tau > 0.0) {
272 G4double electronDensity = material->GetElectronDensity();
273 G4double gam = tau + 1.0;
274 G4double invbeta2 = (gam*gam)/(tau * (tau+2.0));
275 siga = (invbeta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
276 * electronDensity * chargeSquare;
277 }
278 return siga;
279}
280
281//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
double B(double temperature)
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetKineticEnergy() const
G4double GetMdensity() const
G4double GetX1density() const
G4double GetX0density() const
G4double GetCdensity() const
G4double GetMeanExcitationEnergy() const
G4double GetAdensity() const
const G4Material * GetMaterial() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:224
G4double GetElectronDensity() const
Definition: G4Material.hh:215
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:120
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:757
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:652
G4bool IsMaster() const
Definition: G4VEmModel.hh:736
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:645
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:764
const G4MaterialCutsCouple * CurrentCouple() const
Definition: G4VEmModel.hh:480
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:118
virtual G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmax, G4double length, G4double meanLoss) override
G4mplIonisationModel(G4double mCharge, const G4String &nam="mplIonisation")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
void SetParticle(const G4ParticleDefinition *p)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double tmax, G4double length) override