Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGLambdaInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39
40 // create the target particle
41
42 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
43
44 if( verboseLevel > 1 )
45 {
46 const G4Material *targetMaterial = aTrack.GetMaterial();
47 G4cout << "G4RPGLambdaInelastic::ApplyYourself called" << G4endl;
48 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
49 G4cout << "target material = " << targetMaterial->GetName() << ", ";
50 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
51 << G4endl;
52 }
53
54 // Fermi motion and evaporation
55 // As of Geant3, the Fermi energy calculation had not been Done
56
57 G4double ek = originalIncident->GetKineticEnergy()/MeV;
58 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59 G4ReactionProduct modifiedOriginal;
60 modifiedOriginal = *originalIncident;
61
62 G4double tkin = targetNucleus.Cinema( ek );
63 ek += tkin;
64 modifiedOriginal.SetKineticEnergy( ek*MeV );
65 G4double et = ek + amas;
66 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
68 if( pp > 0.0 )
69 {
70 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
71 modifiedOriginal.SetMomentum( momentum * (p/pp) );
72 }
73 //
74 // calculate black track energies
75 //
76 tkin = targetNucleus.EvaporationEffects( ek );
77 ek -= tkin;
78 modifiedOriginal.SetKineticEnergy( ek*MeV );
79 et = ek + amas;
80 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
81 pp = modifiedOriginal.GetMomentum().mag()/MeV;
82 if( pp > 0.0 )
83 {
84 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85 modifiedOriginal.SetMomentum( momentum * (p/pp) );
86 }
87
88 G4ReactionProduct currentParticle = modifiedOriginal;
89 G4ReactionProduct targetParticle;
90 targetParticle = *originalTarget;
91 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
92 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
93 G4bool incidentHasChanged = false;
94 G4bool targetHasChanged = false;
95 G4bool quasiElastic = false;
96 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
97 G4int vecLen = 0;
98 vec.Initialize( 0 );
99
100 const G4double cutOff = 0.1;
101 if( currentParticle.GetKineticEnergy()/MeV > cutOff )
102 Cascade( vec, vecLen,
103 originalIncident, currentParticle, targetParticle,
104 incidentHasChanged, targetHasChanged, quasiElastic );
105
106 CalculateMomenta( vec, vecLen,
107 originalIncident, originalTarget, modifiedOriginal,
108 targetNucleus, currentParticle, targetParticle,
109 incidentHasChanged, targetHasChanged, quasiElastic );
110
111 SetUpChange( vec, vecLen,
112 currentParticle, targetParticle,
113 incidentHasChanged );
114
115 delete originalTarget;
116 return &theParticleChange;
117}
118
119
120void G4RPGLambdaInelastic::Cascade(
122 G4int& vecLen,
123 const G4HadProjectile *originalIncident,
124 G4ReactionProduct &currentParticle,
125 G4ReactionProduct &targetParticle,
126 G4bool &incidentHasChanged,
127 G4bool &targetHasChanged,
128 G4bool &quasiElastic )
129{
130 // Derived from H. Fesefeldt's original FORTRAN code CASL0
131 //
132 // Lambda undergoes interaction with nucleon within a nucleus. Check if it is
133 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
134 // occurs and input particle is degraded in energy. No other particles are produced.
135 // If reaction is possible, find the correct number of pions/protons/neutrons
136 // produced using an interpolation to multiplicity data. Replace some pions or
137 // protons/neutrons by kaons or strange baryons according to the average
138 // multiplicity per Inelastic reaction.
139
140 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
141 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
142 const G4double targetMass = targetParticle.GetMass()/MeV;
143 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
144 targetMass*targetMass +
145 2.0*targetMass*etOriginal );
146 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
147 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
148 {
149 quasiElastic = true;
150 return;
151 }
152 static G4ThreadLocal G4bool first = true;
153 const G4int numMul = 1200;
154 const G4int numSec = 60;
155 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
156 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
157
158 // np = number of pi+, nneg = number of pi-, nz = number of pi0
159
160 G4int counter, nt=0, np=0, nneg=0, nz=0;
161 G4double test;
162 const G4double c = 1.25;
163 const G4double b[] = { 0.70, 0.35 };
164 if( first ) { // compute normalization constants, this will only be Done once
165 first = false;
166 G4int i;
167 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
168 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
169 counter = -1;
170 for( np=0; np<(numSec/3); ++np ) {
171 for( nneg=std::max(0,np-2); nneg<=(np+1); ++nneg ) {
172 for( nz=0; nz<numSec/3; ++nz ) {
173 if( ++counter < numMul ) {
174 nt = np+nneg+nz;
175 if( nt>0 && nt<=numSec ) {
176 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
177 protnorm[nt-1] += protmul[counter];
178 }
179 }
180 }
181 }
182 }
183 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
184 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
185 counter = -1;
186 for( np=0; np<numSec/3; ++np ) {
187 for( nneg=std::max(0,np-1); nneg<=(np+2); ++nneg ) {
188 for( nz=0; nz<numSec/3; ++nz ) {
189 if( ++counter < numMul ) {
190 nt = np+nneg+nz;
191 if( nt>0 && nt<=numSec ) {
192 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
193 neutnorm[nt-1] += neutmul[counter];
194 }
195 }
196 }
197 }
198 }
199 for( i=0; i<numSec; ++i ) {
200 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
201 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
202 }
203 } // end of initialization
204
205 const G4double expxu = 82.; // upper bound for arg. of exp
206 const G4double expxl = -expxu; // lower bound for arg. of exp
212
213 // energetically possible to produce pion(s) --> inelastic scattering
214 // otherwise quasi-elastic scattering
215
216 G4double n, anpn;
217 GetNormalizationConstant( availableEnergy, n, anpn );
218 G4double ran = G4UniformRand();
219 G4double dum, excs = 0.0;
220 if( targetParticle.GetDefinition() == aProton ) {
221 counter = -1;
222 for( np=0; np<numSec/3 && ran>=excs; ++np ) {
223 for( nneg=std::max(0,np-2); nneg<=(np+1) && ran>=excs; ++nneg ) {
224 for( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
225 if( ++counter < numMul ) {
226 nt = np+nneg+nz;
227 if( nt>0 && nt<=numSec ) {
228 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
229 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
230 if( std::fabs(dum) < 1.0 ) {
231 if( test >= 1.0e-10 )excs += dum*test;
232 } else {
233 excs += dum*test;
234 }
235 }
236 }
237 }
238 }
239 }
240 if( ran >= excs ) // 3 previous loops continued to the end
241 {
242 quasiElastic = true;
243 return;
244 }
245 np--; nneg--; nz--;
246 G4int ncht = std::max( 1, np-nneg );
247 switch( ncht ) {
248 case 1:
249 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
250 incidentHasChanged = true;
251 break;
252 case 2:
253 if( G4UniformRand() < 0.5 ) {
254 if( G4UniformRand() < 0.5 ) {
255 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
256 incidentHasChanged = true;
257 }
258 } else {
259 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
260 incidentHasChanged = true;
261 targetParticle.SetDefinitionAndUpdateE( aNeutron );
262 targetHasChanged = true;
263 }
264 break;
265 case 3:
266 if( G4UniformRand() < 0.5 ) {
267 if( G4UniformRand() < 0.5 ) {
268 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
269 incidentHasChanged = true;
270 }
271 targetParticle.SetDefinitionAndUpdateE( aNeutron );
272 targetHasChanged = true;
273 } else {
274 currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
275 incidentHasChanged = true;
276 }
277 break;
278 default:
279 currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
280 incidentHasChanged = true;
281 targetParticle.SetDefinitionAndUpdateE( aNeutron );
282 targetHasChanged = true;
283 break;
284 }
285 }
286 else // target must be a neutron
287 {
288 counter = -1;
289 for( np=0; np<numSec/3 && ran>=excs; ++np ) {
290 for( nneg=std::max(0,np-1); nneg<=(np+2) && ran>=excs; ++nneg ) {
291 for( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
292 if( ++counter < numMul ) {
293 nt = np+nneg+nz;
294 if( nt>0 && nt<=numSec ) {
295 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
296 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
297 if( std::fabs(dum) < 1.0 ) {
298 if( test >= 1.0e-10 )excs += dum*test;
299 } else {
300 excs += dum*test;
301 }
302 }
303 }
304 }
305 }
306 }
307 if( ran >= excs ) // 3 previous loops continued to the end
308 {
309 quasiElastic = true;
310 return;
311 }
312 np--; nneg--; nz--;
313 G4int ncht = std::max( 1, np-nneg+3 );
314 switch( ncht ) {
315 case 1:
316 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
317 incidentHasChanged = true;
318 targetParticle.SetDefinitionAndUpdateE( aProton );
319 targetHasChanged = true;
320 break;
321 case 2:
322 if( G4UniformRand() < 0.5 ) {
323 if( G4UniformRand() < 0.5 ) {
324 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
325 incidentHasChanged = true;
326 }
327 targetParticle.SetDefinitionAndUpdateE( aProton );
328 targetHasChanged = true;
329 } else {
330 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
331 incidentHasChanged = true;
332 }
333 break;
334 case 3:
335 if( G4UniformRand() < 0.5 ) {
336 if( G4UniformRand() < 0.5 ) {
337 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
338 incidentHasChanged = true;
339 }
340 } else {
341 currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
342 incidentHasChanged = true;
343 targetParticle.SetDefinitionAndUpdateE( aProton );
344 targetHasChanged = true;
345 }
346 break;
347 default:
348 currentParticle.SetDefinitionAndUpdateE( aSigmaMinus );
349 incidentHasChanged = true;
350 break;
351 }
352 }
353
354 SetUpPions(np, nneg, nz, vec, vecLen);
355 return;
356}
357
358 /* end of file */
359
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double mag() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
static G4SigmaMinus * SigmaMinus()
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:107
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:101
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77