Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGPiPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4SystemOfUnits.hh"
30#include "Randomize.hh"
31
34 G4Nucleus& targetNucleus)
35{
36 const G4HadProjectile *originalIncident = &aTrack;
37 if (originalIncident->GetKineticEnergy()<= 0.1) {
41 return &theParticleChange;
42 }
43
44 // create the target particle
45
46 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
47 G4ReactionProduct targetParticle( originalTarget->GetDefinition() );
48
49 G4ReactionProduct currentParticle(originalIncident->GetDefinition() );
50 currentParticle.SetMomentum( originalIncident->Get4Momentum().vect() );
51 currentParticle.SetKineticEnergy( originalIncident->GetKineticEnergy() );
52
53 // Fermi motion and evaporation
54 // As of Geant3, the Fermi energy calculation had not been Done
55
56 G4double ek = originalIncident->GetKineticEnergy();
57 G4double amas = originalIncident->GetDefinition()->GetPDGMass();
58
59 G4double tkin = targetNucleus.Cinema( ek );
60 ek += tkin;
61 currentParticle.SetKineticEnergy( ek );
62 G4double et = ek + amas;
63 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
64 G4double pp = currentParticle.GetMomentum().mag();
65 if( pp > 0.0 )
66 {
67 G4ThreeVector momentum = currentParticle.GetMomentum();
68 currentParticle.SetMomentum( momentum * (p/pp) );
69 }
70
71 // calculate black track energies
72
73 tkin = targetNucleus.EvaporationEffects( ek );
74 ek -= tkin;
75 currentParticle.SetKineticEnergy( ek );
76 et = ek + amas;
77 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
78 pp = currentParticle.GetMomentum().mag();
79 if( pp > 0.0 )
80 {
81 G4ThreeVector momentum = currentParticle.GetMomentum();
82 currentParticle.SetMomentum( momentum * (p/pp) );
83 }
84
85 G4ReactionProduct modifiedOriginal = currentParticle;
86
87 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
88 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
89 G4bool incidentHasChanged = false;
90 G4bool targetHasChanged = false;
91 G4bool quasiElastic = false;
92 G4FastVector<G4ReactionProduct,256> vec; // vec will contain the secondary particles
93 G4int vecLen = 0;
94 vec.Initialize( 0 );
95
96 const G4double cutOff = 0.1;
97 if( currentParticle.GetKineticEnergy() > cutOff )
98 InitialCollision(vec, vecLen, currentParticle, targetParticle,
99 incidentHasChanged, targetHasChanged);
100
101 CalculateMomenta( vec, vecLen,
102 originalIncident, originalTarget, modifiedOriginal,
103 targetNucleus, currentParticle, targetParticle,
104 incidentHasChanged, targetHasChanged, quasiElastic );
105
106 SetUpChange( vec, vecLen,
107 currentParticle, targetParticle,
108 incidentHasChanged );
109
110 delete originalTarget;
111 return &theParticleChange;
112}
113
114
115// Initial Collision
116// selects the particle types arising from the initial collision of
117// the projectile and target nucleon. Secondaries are assigned to
118// forward and backward reaction hemispheres, but final state energies
119// and momenta are not calculated here.
120
121void
122G4RPGPiPlusInelastic::InitialCollision(G4FastVector<G4ReactionProduct,256>& vec,
123 G4int& vecLen,
124 G4ReactionProduct& currentParticle,
125 G4ReactionProduct& targetParticle,
126 G4bool& incidentHasChanged,
127 G4bool& targetHasChanged)
128{
129 G4double KE = currentParticle.GetKineticEnergy()/GeV;
130
131 G4int mult;
132 G4int partType;
133 std::vector<G4int> fsTypes;
134
135 G4double testCharge;
136 G4double testBaryon;
137 G4double testStrange;
138
139 // Get particle types according to incident and target types
140
141 if (targetParticle.GetDefinition() == particleDef[pro]) {
142 mult = GetMultiplicityT32(KE);
143 fsTypes = GetFSPartTypesForPipP(mult, KE);
144 partType = fsTypes[0];
145 if (partType != pro) {
146 targetHasChanged = true;
147 targetParticle.SetDefinition(particleDef[partType]);
148 }
149
150 testCharge = 2.0;
151 testBaryon = 1.0;
152 testStrange = 0.0;
153
154 } else { // target was a neutron
155 mult = GetMultiplicityT12(KE);
156 fsTypes = GetFSPartTypesForPipN(mult, KE);
157 partType = fsTypes[0];
158 if (partType != neu) {
159 targetHasChanged = true;
160 targetParticle.SetDefinition(particleDef[partType]);
161 }
162
163 testCharge = 1.0;
164 testBaryon = 1.0;
165 testStrange = 0.0;
166 }
167
168 // Remove target particle from list
169
170 fsTypes.erase(fsTypes.begin());
171
172 // See if the incident particle changed type
173
174 G4int choose = -1;
175 for(G4int i=0; i < mult-1; ++i ) {
176 partType = fsTypes[i];
177 if (partType == pip) {
178 choose = i;
179 break;
180 }
181 }
182 if (choose == -1) {
183 incidentHasChanged = true;
184 choose = G4int(G4UniformRand()*(mult-1) );
185 partType = fsTypes[choose];
186 currentParticle.SetDefinition(particleDef[partType]);
187 }
188 fsTypes.erase(fsTypes.begin()+choose);
189
190 // Remaining particles are secondaries. Put them into vec.
191 // Improve this by randomizing secondary order, then alternate
192 // which secondary is put into forward or backward hemisphere
193
194 G4ReactionProduct* rp(0);
195 for(G4int i=0; i < mult-2; ++i ) {
196 partType = fsTypes[i];
197 rp = new G4ReactionProduct();
198 rp->SetDefinition(particleDef[partType]);
199 (G4UniformRand() < 0.5) ? rp->SetSide(-1) : rp->SetSide(1);
200 if (partType > pim && partType < pro) rp->SetMayBeKilled(false); // kaons
201 vec.SetElement(vecLen++, rp);
202 }
203
204 // if (mult == 2 && !incidentHasChanged && !targetHasChanged)
205 // quasiElastic = true;
206
207 // Check conservation of charge, strangeness, baryon number
208
209 CheckQnums(vec, vecLen, currentParticle, targetParticle,
210 testCharge, testBaryon, testStrange);
211
212 return;
213}
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void SetElement(G4int anIndex, Type *anElement)
Definition: G4FastVector.hh:72
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
void CheckQnums(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4double Q, G4double B, G4double S)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4ParticleDefinition * particleDef[18]
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
std::vector< G4int > GetFSPartTypesForPipP(G4int mult, G4double KE) const
G4int GetMultiplicityT32(G4double KE) const
G4int GetMultiplicityT12(G4double KE) const
std::vector< G4int > GetFSPartTypesForPipN(G4int mult, G4double KE) const
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)