Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4AnnihiToMuPair.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// ------------ G4AnnihiToMuPair physics process ------
29// by H.Burkhardt, S. Kelner and R. Kokoulin, November 2002
30// -----------------------------------------------------------------------------
31//
32//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......//
33//
34// 27.01.03 : first implementation (hbu)
35// 04.02.03 : cosmetic simplifications (mma)
36// 25.10.04 : migrade to new interfaces of ParticleChange (vi)
37// 28.02.18 : cross section now including SSS threshold factor
38//
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
40
41#include "G4AnnihiToMuPair.hh"
42
43#include "G4ios.hh"
44#include "Randomize.hh"
46#include "G4SystemOfUnits.hh"
47
48#include "G4Positron.hh"
49#include "G4MuonPlus.hh"
50#include "G4MuonMinus.hh"
51#include "G4Material.hh"
52#include "G4Step.hh"
53#include "G4LossTableManager.hh"
54
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
57using namespace std;
58
60 G4ProcessType type):G4VDiscreteProcess (processName, type)
61{
62 //e+ Energy threshold
63 const G4double Mu_massc2 = G4MuonPlus::MuonPlus()->GetPDGMass();
64 LowestEnergyLimit = 2.*Mu_massc2*Mu_massc2/electron_mass_c2 - electron_mass_c2;
65
66 //modele ok up to 1000 TeV due to neglected Z-interference
67 HighestEnergyLimit = 1000.*TeV;
68
69 CurrentSigma = 0.0;
70 CrossSecFactor = 1.;
73}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
76
78{
80}
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
83
85{
86 return ( &particle == G4Positron::Positron() );
87}
88
89//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
90
92// Build cross section and mean free path tables
93//here no tables, just calling PrintInfoDefinition
94{
95 CurrentSigma = 0.0;
97}
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
100
102// Set the factor to artificially increase the cross section
103{
104 CrossSecFactor = fac;
105 G4cout << "The cross section for AnnihiToMuPair is artificially "
106 << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
107}
108
109//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
110
112// Calculates the microscopic cross section in GEANT4 internal units.
113// It gives a good description from threshold to 1000 GeV
114{
115 static const G4double Mmuon = G4MuonPlus::MuonPlus()->GetPDGMass();
116 static const G4double Rmuon = CLHEP::elm_coupling/Mmuon; //classical particle radius
117 static const G4double Sig0 = CLHEP::pi*Rmuon*Rmuon/3.; //constant in crossSection
118 static const G4double pia = CLHEP::pi * CLHEP::fine_structure_const; // pi * alphaQED
119
120 G4double CrossSection = 0.;
121 if (Epos < LowestEnergyLimit) return CrossSection;
122
123 G4double xi = LowestEnergyLimit/Epos;
124 G4double piaxi = pia * sqrt(xi);
125 G4double SigmaEl = Sig0 * xi * (1.+xi/2.) * piaxi;
126 if( Epos>LowestEnergyLimit+1.e-5 ) SigmaEl /= (1.-std::exp( -piaxi/std::sqrt(1-xi) ));
127 CrossSection = SigmaEl*Z; // SigmaEl per electron * number of electrons per atom
128 return CrossSection;
129}
130
131//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
132
134 const G4Material* aMaterial)
135{
136 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
137 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
138
139 G4double SIGMA = 0.0;
140
141 for ( size_t i=0 ; i < aMaterial->GetNumberOfElements() ; ++i )
142 {
143 G4double AtomicZ = (*theElementVector)[i]->GetZ();
144 SIGMA += NbOfAtomsPerVolume[i] *
145 ComputeCrossSectionPerAtom(PositronEnergy,AtomicZ);
146 }
147 return SIGMA;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
151
154
155// returns the positron mean free path in GEANT4 internal units
156
157{
158 const G4DynamicParticle* aDynamicPositron = aTrack.GetDynamicParticle();
159 G4double PositronEnergy = aDynamicPositron->GetKineticEnergy()
160 +electron_mass_c2;
161 G4Material* aMaterial = aTrack.GetMaterial();
162 CurrentSigma = CrossSectionPerVolume(PositronEnergy, aMaterial);
163
164 // increase the CrossSection by CrossSecFactor (default 1)
165 G4double mfp = DBL_MAX;
166 if(CurrentSigma > DBL_MIN) mfp = 1.0/(CurrentSigma*CrossSecFactor);
167
168 return mfp;
169}
170
171//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
172
174 const G4Step& aStep)
175//
176// generation of e+e- -> mu+mu-
177//
178{
179
181 static const G4double Mele=electron_mass_c2;
182 static const G4double Mmuon=G4MuonPlus::MuonPlus()->GetPDGMass();
183
184 // current Positron energy and direction, return if energy too low
185 const G4DynamicParticle *aDynamicPositron = aTrack.GetDynamicParticle();
186 G4double Epos = aDynamicPositron->GetKineticEnergy() + Mele;
187
188 // test of cross section
189 if(CurrentSigma*G4UniformRand() >
190 CrossSectionPerVolume(Epos, aTrack.GetMaterial()))
191 {
192 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
193 }
194
195 if (Epos < LowestEnergyLimit) {
196 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
197 }
198
199 G4ParticleMomentum PositronDirection =
200 aDynamicPositron->GetMomentumDirection();
201 G4double xi = LowestEnergyLimit/Epos; // xi is always less than 1,
202 // goes to 0 at high Epos
203
204 // generate cost
205 //
206 G4double cost;
207 do { cost = 2.*G4UniformRand()-1.; }
208 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
209 while (2.*G4UniformRand() > 1.+xi+cost*cost*(1.-xi) );
210 //1+cost**2 at high Epos
211 G4double sint = sqrt(1.-cost*cost);
212
213 // generate phi
214 //
215 G4double phi=2.*pi*G4UniformRand();
216
217 G4double Ecm = sqrt(0.5*Mele*(Epos+Mele));
218 G4double Pcm = sqrt(Ecm*Ecm-Mmuon*Mmuon);
219 G4double beta = sqrt((Epos-Mele)/(Epos+Mele));
220 G4double gamma = Ecm/Mele; // =sqrt((Epos+Mele)/(2.*Mele));
221 G4double Pt = Pcm*sint;
222
223 // energy and momentum of the muons in the Lab
224 //
225 G4double EmuPlus = gamma*( Ecm+cost*beta*Pcm);
226 G4double EmuMinus = gamma*( Ecm-cost*beta*Pcm);
227 G4double PmuPlusZ = gamma*(beta*Ecm+cost* Pcm);
228 G4double PmuMinusZ = gamma*(beta*Ecm-cost* Pcm);
229 G4double PmuPlusX = Pt*cos(phi);
230 G4double PmuPlusY = Pt*sin(phi);
231 G4double PmuMinusX =-Pt*cos(phi);
232 G4double PmuMinusY =-Pt*sin(phi);
233 // absolute momenta
234 G4double PmuPlus = sqrt(Pt*Pt+PmuPlusZ *PmuPlusZ );
235 G4double PmuMinus = sqrt(Pt*Pt+PmuMinusZ*PmuMinusZ);
236
237 // mu+ mu- directions for Positron in z-direction
238 //
240 MuPlusDirection ( PmuPlusX/PmuPlus, PmuPlusY/PmuPlus, PmuPlusZ/PmuPlus );
242 MuMinusDirection(PmuMinusX/PmuMinus,PmuMinusY/PmuMinus,PmuMinusZ/PmuMinus);
243
244 // rotate to actual Positron direction
245 //
246 MuPlusDirection.rotateUz(PositronDirection);
247 MuMinusDirection.rotateUz(PositronDirection);
248
250 // create G4DynamicParticle object for the particle1
251 G4DynamicParticle* aParticle1= new G4DynamicParticle(
252 G4MuonPlus::MuonPlus(),MuPlusDirection,EmuPlus-Mmuon);
253 aParticleChange.AddSecondary(aParticle1);
254 // create G4DynamicParticle object for the particle2
255 G4DynamicParticle* aParticle2= new G4DynamicParticle(
256 G4MuonMinus::MuonMinus(),MuMinusDirection,EmuMinus-Mmuon);
257 aParticleChange.AddSecondary(aParticle2);
258
259 // Kill the incident positron
260 //
263
264 return &aParticleChange;
265}
266
267//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
268
270{
271 G4String comments ="e+e->mu+mu- annihilation, atomic e- at rest, SubType=.";
272 G4cout << G4endl << GetProcessName() << ": " << comments
274 G4cout << " threshold at " << LowestEnergyLimit/GeV << " GeV"
275 << " good description up to "
276 << HighestEnergyLimit/TeV << " TeV for all Z." << G4endl;
277}
278
279//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< G4Element * > G4ElementVector
G4ForceCondition
G4ProcessType
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *) override
void BuildPhysicsTable(const G4ParticleDefinition &) override
G4double ComputeCrossSectionPerAtom(G4double PositronEnergy, G4double AtomicZ)
G4bool IsApplicable(const G4ParticleDefinition &) override
void SetCrossSecFactor(G4double fac)
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep) override
G4double CrossSectionPerVolume(G4double PositronEnergy, const G4Material *)
G4AnnihiToMuPair(const G4String &processName="AnnihiToMuPair", G4ProcessType type=fElectromagnetic)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4LossTableManager * Instance()
void DeRegister(G4VEnergyLossProcess *p)
void Register(G4VEnergyLossProcess *p)
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:98
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
virtual void Initialize(const G4Track &)
static G4Positron * Positron()
Definition: G4Positron.cc:93
Definition: G4Step.hh:62
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:327
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:406
G4int GetProcessSubType() const
Definition: G4VProcess.hh:400
const G4String & GetProcessName() const
Definition: G4VProcess.hh:382
#define DBL_MIN
Definition: templates.hh:54
#define DBL_MAX
Definition: templates.hh:62