Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DensityEffectCalculator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26
27/*
28 * Implements calculation of the Fermi density effect as per the method
29 * described in:
30 *
31 * R. M. Sternheimer, M. J. Berger, and S. M. Seltzer. Density
32 * effect for the ionization loss of charged particles in various sub-
33 * stances. Atom. Data Nucl. Data Tabl., 30:261, 1984.
34 *
35 * Which (among other Sternheimer references) builds on:
36 *
37 * R. M. Sternheimer. The density effect for ionization loss in
38 * materials. Phys. Rev., 88:851­859, 1952.
39 *
40 * The returned values of delta are directly from the Sternheimer calculation,
41 * and not Sternheimer's popular three-part approximate parameterization
42 * introduced in the same paper.
43 *
44 * Author: Matthew Strait <[email protected]> 2019
45 */
46
48#include "G4AtomicShells.hh"
49#include "G4NistManager.hh"
50#include "G4Pow.hh"
51
52static G4Pow * gpow = G4Pow::GetInstance();
53
54const G4int maxWarnings = 20;
55
57 : fMaterial(mat), fVerbose(0), fWarnings(0), nlev(n)
58{
59 fVerbose = std::max(fVerbose, G4NistManager::Instance()->GetVerbose());
60
61 sternf = new G4double [nlev];
62 levE = new G4double [nlev];
63 sternl = new G4double [nlev];
64 sternEbar = new G4double [nlev];
65 for(G4int i=0; i<nlev; ++i) {
66 sternf[i] = 0.0;
67 levE[i] = 0.0;
68 sternl[i] = 0.0;
69 sternEbar[i] = 0.0;
70 }
71
72 fConductivity = sternx = 0.0;
73 G4bool conductor = (fMaterial->GetFreeElectronDensity() > 0.0);
74
75 G4int sh = 0;
76 G4double sum = 0.;
77 const G4double tot = fMaterial->GetTotNbOfAtomsPerVolume();
78 for(size_t j = 0; j < fMaterial->GetNumberOfElements(); ++j) {
79 // The last subshell is considered to contain the conduction
80 // electrons. Sternheimer 1984 says "the lowest chemical valance of
81 // the element" is used to set the number of conduction electrons.
82 // I'm not sure if that means the highest subshell or the whole
83 // shell, but in any case, he also says that the choice is arbitrary
84 // and offers a possible alternative. This is one of the sources of
85 // uncertainty in the model.
86 const G4double frac = fMaterial->GetVecNbOfAtomsPerVolume()[j]/tot;
87 const G4int Z = fMaterial->GetElement(j)->GetZasInt();
89 for(G4int i = 0; i < nshell; ++i) {
90 // For conductors, put *all* top shell electrons into the conduction
91 // band, regardless of element.
93 if(i < nshell-1 || !conductor) {
94 sternf[sh] += xx;
95 } else {
96 fConductivity += xx;
97 }
98 levE[sh] = G4AtomicShells::GetBindingEnergy(Z, i)/CLHEP::eV;
99 ++sh;
100 }
101 }
102 for(G4int i=0; i<nlev; ++i) {
103 sum += sternf[i];
104 }
105 sum = (sum > 0.0) ? 1./sum : 0.0;
106 for(G4int i=0; i<nlev; ++i) {
107 sternf[i] *= sum;
108 }
109 plasmaE = fMaterial->GetIonisation()->GetPlasmaEnergy()/CLHEP::eV;
110 meanexcite = fMaterial->GetIonisation()->GetMeanExcitationEnergy()/CLHEP::eV;
111}
112
114{
115 delete [] sternf;
116 delete [] levE;
117 delete [] sternl;
118 delete [] sternEbar;
119}
120
122{
123 if(fVerbose > 1) {
124 G4cout << "G4DensityEffectCalculator::ComputeDensityCorrection for "
125 << fMaterial->GetName() << ", x= " << x << G4endl;
126 }
127 const G4double approx = fMaterial->GetIonisation()->GetDensityCorrection(x);
128 const G4double exact = FermiDeltaCalculation(x);
129
130 if(fVerbose > 1) {
131 G4cout << " Delta: computed= " << exact
132 << ", parametrized= " << approx << G4endl;
133 }
134 if(approx > 0. && exact < 0.) {
135 if(fVerbose > 0) {
136 ++fWarnings;
137 if(fWarnings < maxWarnings) {
139 ed << "Sternheimer fit failed for " << fMaterial->GetName()
140 << ", x = " << x << ": Delta exact= "
141 << exact << ", approx= " << approx;
142 G4Exception("G4DensityEffectCalculator::DensityCorrection", "mat008",
143 JustWarning, ed);
144 }
145 }
146 return approx;
147 }
148 // Fall back to approx if exact and approx are very different, under the
149 // assumption that this means the exact calculation has gone haywire
150 // somehow, with the exception of the case where approx is negative. I
151 // have seen this clearly-wrong result occur for substances with extremely
152 // low density (1e-25 g/cc).
153 if(approx >= 0. && std::abs(exact - approx) > 1.) {
154 if(fVerbose > 0) {
155 ++fWarnings;
156 if(fWarnings < maxWarnings) {
158 ed << "Sternheimer exact= " << exact << " and approx= "
159 << approx << " are too different for "
160 << fMaterial->GetName() << ", x = " << x;
161 G4Exception("G4DensityEffectCalculator::DensityCorrection", "mat008",
162 JustWarning, ed);
163 }
164 }
165 return approx;
166 }
167 return exact;
168}
169
170G4double G4DensityEffectCalculator::FermiDeltaCalculation(G4double x)
171{
172 // Above beta*gamma of 10^10, the exact treatment is within machine
173 // precision of the limiting case, for ordinary solids, at least. The
174 // convergence goes up as the density goes down, but even in a pretty
175 // hard vacuum it converges by 10^20. Also, it's hard to imagine how
176 // this energy is relevant (x = 20 -> 10^19 GeV for muons). So this
177 // is mostly not here for physical reasons, but rather to avoid ugly
178 // discontinuities in the return value.
179 if(x > 20.) { return -1.; }
180
181 sternx = x;
182 G4double sternrho = Newton(1.5, true);
183
184 // Negative values, and values much larger than unity are non-physical.
185 // Values between zero and one are also suspect, but not as clearly wrong.
186 if(sternrho <= 0. || sternrho > 100.) {
187 if(fVerbose > 0) {
188 ++fWarnings;
189 if(fWarnings < maxWarnings) {
191 ed << "Sternheimer computation failed for " << fMaterial->GetName()
192 << ", x = " << x << ":\n"
193 << "Could not solve for Sternheimer rho. Probably you have a \n"
194 << "mean ionization energy which is incompatible with your\n"
195 << "distribution of energy levels, or an unusually dense material.\n"
196 << "Number of levels: " << nlev
197 << " Mean ionization energy(eV): " << meanexcite
198 << " Plasma energy(eV): " << plasmaE << "\n";
199 for(G4int i = 0; i < nlev; ++i) {
200 ed << "Level " << i << ": strength " << sternf[i]
201 << ": energy(eV)= " << levE[i] << "\n";
202 }
203 G4Exception("G4DensityEffectCalculator::SetupFermiDeltaCalc", "mat008",
204 JustWarning, ed);
205 }
206 }
207 return -1.;
208 }
209
210 // Calculate the Sternheimer adjusted energy levels and parameters l_i given
211 // the Sternheimer parameter rho.
212 sternrho /= plasmaE;
213 for(G4int i=0; i<nlev; ++i) {
214 sternEbar[i] = levE[i] * sternrho;
215 sternl[i] = std::sqrt(gpow->powN(sternEbar[i], 2) + 2./3.*sternf[i]);
216 }
217
218 // Make imphirical initial guess
219 const G4double sternL = Newton(sternrho, false);
220 if(sternL > -1.) {
221 return DeltaOnceSolved(sternL);
222 }
223
224 return -1.; // Signal the caller to use the Sternheimer approximation,
225 // because we have been unable to solve the exact form.
226}
227
228/* Newton's method for finding roots. Adapted from G4PolynominalSolver, but
229 * without the assumption that the input is a polynomial. Also, here we
230 * always expect the roots to be positive, so return -1 as an error value. */
231G4double G4DensityEffectCalculator::Newton(G4double start, G4bool first)
232{
233 const G4int maxIter = 100;
234 G4int nbad = 0, ngood = 0;
235
236 G4double lambda(start), value(0.), dvalue(0.);
237
238 if(fVerbose > 2) {
239 G4cout << "G4DensityEffectCalculator::Newton: strat= " << start
240 << " type: " << first << G4endl;
241 }
242 while(true) {
243 if(first) {
244 value = FRho(lambda);
245 dvalue = DFRho(lambda);
246 } else {
247 value = Ell(lambda);
248 dvalue = DEll(lambda);
249 }
250 if(dvalue == 0.0) { break; }
251 const G4double del = value/dvalue;
252 lambda -= del;
253
254 const G4double eps = std::abs(del);
255 if(eps <= 1.e-12) {
256 ++ngood;
257 if(ngood == 2) {
258 if(fVerbose > 2) {
259 G4cout << " Converged with result= " << lambda << G4endl;
260 }
261 return lambda;
262 }
263 } else {
264 ++nbad;
265 }
266 if(nbad > maxIter || eps > 1.) { break; }
267 }
268 if(fVerbose > 2) {
269 G4cout << " Failed to converge last value= " << value
270 << " dvalue= " << dvalue << " lambda= " << lambda << G4endl;
271 }
272 return -1.;
273}
274
275/* Return the derivative of the equation used
276 * to solve for the Sternheimer parameter rho. */
277G4double G4DensityEffectCalculator::DFRho(G4double rho)
278{
279 G4double ans = 0.0;
280 for(G4int i = 0; i < nlev; ++i) {
281 if(sternf[i] > 0.) {
282 ans += sternf[i] * gpow->powN(levE[i], 2) * rho /
283 (gpow->powN(levE[i] * rho, 2)
284 + 2./3. * sternf[i] * gpow->powN(plasmaE, 2));
285 }
286 }
287 return ans;
288}
289
290/* Return the functional value for the equation used
291 * to solve for the Sternheimer parameter rho. */
292G4double G4DensityEffectCalculator::FRho(G4double rho)
293{
294 G4double ans = 0.0;
295 for(G4int i = 0; i<nlev; ++i) {
296 if(sternf[i] > 0.) {
297 ans += sternf[i] * G4Log(gpow->powN(levE[i]*rho, 2) +
298 2./3. * sternf[i]*gpow->powN(plasmaE, 2));
299 }
300 }
301 ans *= 0.5; // pulled out of loop for efficiency
302
303 if(fConductivity > 0.) {
304 ans += fConductivity * G4Log(plasmaE * std::sqrt(fConductivity));
305 }
306 ans -= G4Log(meanexcite);
307 return ans;
308}
309
310/* Return the derivative for the equation used to
311 * solve for the Sternheimer parameter l, called 'L' here. */
312G4double G4DensityEffectCalculator::DEll(G4double L)
313{
314 G4double ans = 0.;
315 for(G4int i=0; i<nlev; ++i) {
316 if(sternf[i] > 0 && (sternEbar[i] > 0. || L != 0.)) {
317 const G4double y = gpow->powN(sternEbar[i], 2);
318 ans += sternf[i]/gpow->powN(y + L*L, 2);
319 }
320 }
321 ans *= (-2*L); // pulled out of the loop for efficiency
322 return ans;
323}
324
325/* Return the functional value for the equation used to
326 * solve for the Sternheimer parameter l, called 'L' here. */
327G4double G4DensityEffectCalculator::Ell(G4double L)
328{
329 G4double ans = 0.;
330 for(G4int i=0; i<nlev; ++i) {
331 if(sternf[i] > 0. && (sternEbar[i] > 0. || L != 0.)) {
332 ans += sternf[i]/(gpow->powN(sternEbar[i], 2) + L*L);
333 }
334 }
335 ans -= gpow->powZ(10, -2 * sternx);
336 return ans;
337}
338
339/**
340 * Given the Sternheimer parameter l^2 (called 'sternL' here), and that
341 * the l_i and adjusted energies have been found with SetupFermiDeltaCalc(),
342 * return the value of delta. Helper function for DoFermiDeltaCalc().
343 */
344G4double G4DensityEffectCalculator::DeltaOnceSolved(G4double sternL)
345{
346 G4double ans = 0.;
347 for(G4int i=0; i<nlev; ++i) {
348 if(sternf[i] > 0.) {
349 ans += sternf[i] * G4Log((gpow->powN(sternl[i], 2)
350 + gpow->powN(sternL, 2))/gpow->powN(sternl[i], 2));
351 }
352 }
353 ans -= gpow->powN(sternL, 2)/(1 + gpow->powZ(10, 2 * sternx));
354 return ans;
355}
const G4int maxWarnings
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
static G4int GetNumberOfElectrons(G4int Z, G4int SubshellNb)
static G4double GetBindingEnergy(G4int Z, G4int SubshellNb)
static G4int GetNumberOfShells(G4int Z)
G4DensityEffectCalculator(const G4Material *, G4int)
G4double ComputeDensityCorrection(G4double x)
G4int GetZasInt() const
Definition: G4Element.hh:131
G4double GetDensityCorrection(G4double x)
G4double GetMeanExcitationEnergy() const
G4double GetPlasmaEnergy() const
G4double GetTotNbOfAtomsPerVolume() const
Definition: G4Material.hh:207
const G4Element * GetElement(G4int iel) const
Definition: G4Material.hh:200
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:224
G4double GetFreeElectronDensity() const
Definition: G4Material.hh:177
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:204
const G4String & GetName() const
Definition: G4Material.hh:175
static G4NistManager * Instance()
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:225
G4double powN(G4double x, G4int n) const
Definition: G4Pow.cc:166