Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4MicroElecLOPhononModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// G4MicroElecLOPhononModel.cc,
28// 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b]
29// Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
30// M. Raine and D. Lambert are with CEA [a]
31//
32// A part of this work has been funded by the French space agency(CNES[c])
33// [a] CEA, DAM, DIF - 91297 ARPAJON, France
34// [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
35// [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
36//
37// Based on the following publications
38//
39// - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
40// Electron emission yield for low energy electrons:
41// Monte Carlo simulation and experimental comparison for Al, Ag, and Si
42// Journal of Applied Physics 121 (2017) 215107.
43// https://doi.org/10.1063/1.4984761
44//
45// - P. Caron,
46// Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
47// PHD, 16th October 2019
48//
49// - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech,
50// Geant4 physics processes for microdosimetry and secondary electron emission simulation :
51// Extension of MicroElec to very low energies and new materials
52// NIM B, 2020, in review.
53//
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
58#include "G4SystemOfUnits.hh"
60
62 const G4String& nam)
63 : G4VEmModel(nam),isInitialised(false)
64{
65 abs = false;
67 G4cout << "SiO2 Phonon model is constructed " << G4endl;
68}
69
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
71
73{}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
76
78 const G4DataVector& /*cuts*/)
79{
80
81 if (isOkToBeInitialised == true && isInitialised == false) {
82 G4cout << "Calling G4MicroElecLOPhononModel" << "::Initialise()" << G4endl;
83
84 if (isInitialised) { return; }
86 isInitialised = true;
87 }
88}
89
90//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
91
93 const G4ParticleDefinition* p,
94 G4double ekin,
96{
97 G4double e = CLHEP::eplus / coulomb,
98
99 m0 = CLHEP::electron_mass_c2 / c_squared / kg,
100 h = CLHEP::hbar_Planck / (m2*kg / s),
101 eps0 = CLHEP::epsilon0 / (farad / m),
102 kb = CLHEP::k_Boltzmann / (joule / kelvin);
103 G4double eps = 9,
104 einf = 3,
105 T = 300;
106
107 isOkToBeInitialised = true;
108
109 const G4DataVector cuts;
110 Initialise(p, cuts);
111
112 if (material->GetName()!="G4_SILICON_DIOXIDE") return 1/DBL_MAX;
113
114 G4double E =(ekin/eV)*e;
115
116 // Parameters SiO2
117 eps = 3.84;
118 einf = 2.25;
119 phononEnergy = (0.75*0.153+0.25*0.063 )* eV;
120 G4double hw = (phononEnergy / eV) * e;
121 G4double n = 1.0 / (std::exp(hw / (kb*T)) - 1); //Phonon distribution
122
123 if (abs) { //Absorption
124 Eprim = E + hw;
125 signe = -1;
126 }
127 else { //Emission
128 Eprim = E - hw;
129 signe = +1;
130 }
131
132 G4double racine = std::sqrt(1. + ((-signe*hw) / E));
133
134 G4double P = (std::pow(e, 2) / (4 * pi*eps0*h*h)) * (n + 0.5 + signe*0.5) * ((1 / einf) - (1 / eps)) * std::sqrt(m0 / (2 * E)) *hw* std::log((1 + racine) / (signe * 1 + ((-signe)*racine)));
135
136 G4double MFP = (std::sqrt(2. * E / m0) / P)*m;
137
138 return 2 / MFP;
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
142
144 std::vector<G4DynamicParticle*>*,
146 const G4DynamicParticle* aDynamicElectron,
148{
149
150 G4double E = aDynamicElectron->GetKineticEnergy();
151
152 if (abs) {
153 Eprim = E + phononEnergy;
154 }
155 else {
156 Eprim = E - phononEnergy;
157 }
158 G4double rand = G4UniformRand();
159 G4double B = (E + Eprim + 2 * std::sqrt(E*Eprim)) / (E + Eprim - 2 * std::sqrt(E*Eprim));
160 G4double cosTheta = ((E + Eprim) / (2 * std::sqrt(E*Eprim)))*(1 - std::pow(B, rand)) + std::pow(B, rand);
161
162 if(Interband){
163 cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
164 }
165 G4double phi = 2. * pi * G4UniformRand();
166 G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
167 G4ThreeVector xVers = zVers.orthogonal();
168 G4ThreeVector yVers = zVers.cross(xVers);
169
170 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
171 G4double yDir = xDir;
172 xDir *= std::cos(phi);
173 yDir *= std::sin(phi);
174
175 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
176
179}
180
181//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
double B(double temperature)
double G4double
Definition: G4Types.hh:83
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4String & GetName() const
Definition: G4Material.hh:175
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax) override
G4MicroElecLOPhononModel(const G4ParticleDefinition *p=0, const G4String &nam="G4MicroElecLOPhononModel")
G4ParticleChangeForGamma * fParticleChangeForGamma
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:133
#define DBL_MAX
Definition: templates.hh:62