Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4XTRRegularRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
28#include <complex>
29
32#include "Randomize.hh"
33
34#include "G4Gamma.hh"
35using namespace std;
36
37////////////////////////////////////////////////////////////////////////////
38//
39// Constructor, destructor
40
42 G4Material* foilMat,G4Material* gasMat,
43 G4double a, G4double b, G4int n,
44 const G4String& processName) :
45 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
46{
47 G4cout<<" XTR Regular discrete radiator model is called"<<G4endl ;
48
49 fExitFlux = true;
50
51 // Build energy and angular integral spectra of X-ray TR photons from
52 // a radiator
53
54 // BuildTable() ;
55}
56
57///////////////////////////////////////////////////////////////////////////
58
60{
61 ;
62}
63
64///////////////////////////////////////////////////////////////////////////
65//
66//
67
69{
70 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
71 G4double aMa, bMb ,sigma, dump;
72 G4int k, kMax, kMin;
73
75 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
76 sigma = 0.5*(aMa + bMb);
77 dump = std::exp(-fPlateNumber*sigma);
78 if(verboseLevel > 2) G4cout<<" dump = "<<dump<<G4endl;
79 cofPHC = 4*pi*hbarc;
80 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
81 cof1 = fPlateThick*tmp;
82 cof2 = fGasThick*tmp;
83
84 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
85 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
86 cofMin /= cofPHC;
87
88 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
89
90 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
91 // else kMin = 1;
92
93
94 kMin = G4int(cofMin);
95 if (cofMin > kMin) kMin++;
96
97 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
98 // tmp /= cofPHC;
99 // kMax = G4int(tmp);
100 // if(kMax < 0) kMax = 0;
101 // kMax += kMin;
102
103
104 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
105
106 // tmp /= fGamma;
107 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
108
109 if(verboseLevel > 2)
110 {
111 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
112 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
113 }
114 for( k = kMin; k <= kMax; k++ )
115 {
116 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
117 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
118 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
119 if( k == kMin && kMin == G4int(cofMin) )
120 {
121 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
122 }
123 else
124 {
125 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
126 }
127 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
128
129 if(verboseLevel > 2)
130 {
131 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
132 // <<"; sum = "<<sum<<G4endl;
133 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
134 <<" "<<sum<<G4endl;
135 }
136 }
137 result = 2*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
138 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
139 // fPlateNumber;
140 result *= dump*( -1 + dump + 2*fPlateNumber );
141 /*
142 fEnergy = energy;
143 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
144 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
145
146 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
147 0.0,0.3*fMaxThetaTR) +
148 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
149 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
150 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
151 0.6*fMaxThetaTR,fMaxThetaTR) ;
152 result += tmp;
153 */
154 return result;
155}
156
157
158
159///////////////////////////////////////////////////////////////////////////
160//
161// Approximation for radiator interference factor for the case of
162// fully Regular radiator. The plate and gas gap thicknesses are fixed .
163// The mean values of the plate and gas gap thicknesses
164// are supposed to be about XTR formation zones but much less than
165// mean absorption length of XTR photons in coresponding material.
166
169 G4double gamma, G4double varAngle )
170{
171 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, I2 ;
172
173 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle) ;
174 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle) ;
175
176 aMa = fPlateThick*GetPlateLinearPhotoAbs(energy) ;
177 bMb = fGasThick*GetGasLinearPhotoAbs(energy) ;
178
179 Qa = std::exp(-aMa) ;
180 Qb = std::exp(-bMb) ;
181 Q = Qa*Qb ;
182
183 // G4complex Ca(1.0+0.5*fPlateThick*Ma,fPlateThick/Za) ;
184 // G4complex Cb(1.0+0.5*fGasThick*Mb,fGasThick/Zb) ;
185
186 G4complex Ha( std::exp(-0.5*aMa)*std::cos(aZa),
187 -std::exp(-0.5*aMa)*std::sin(aZa) ) ;
188
189 G4complex Hb( std::exp(-0.5*bMb)*std::cos(bZb),
190 -std::exp(-0.5*bMb)*std::sin(bZb) ) ;
191
192 G4complex H = Ha*Hb ;
193
194 G4complex Hs = std::conj(H) ;
195
196 // G4complex F1 = ( 0.5*(1+Qa)*(1+H) - Ha - Qa*Hb )/(1-H) ;
197
198 G4complex F2 = (1.0-Ha)*(Qa-Ha)*Hb*(1.0-Hs)*(Q-Hs) ;
199
200 F2 *= std::pow(Q,G4double(fPlateNumber)) - std::pow(H,fPlateNumber) ;
201
202 result = ( 1. - std::pow(Q,G4double(fPlateNumber)) )/( 1. - Q ) ;
203
204 result *= (1. - Qa)*(1. + Qa - 2.*std::sqrt(Qa)*std::cos(aZa)) ;
205
206 result /= (1. - std::sqrt(Q))*(1. - std::sqrt(Q)) +
207 4.*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
208
209 I2 = 1.; // 2.0*std::real(F2) ;
210
211 I2 /= (1. - std::sqrt(Q))*(1. - std::sqrt(Q)) +
212 4.*std::sqrt(Q)*std::sin(0.5*(aZa+bZb))*std::sin(0.5*(aZa+bZb)) ;
213
214 I2 /= Q*( (std::sqrt(Q)-std::cos(aZa+bZb))*(std::sqrt(Q)-std::cos(aZa+bZb)) +
215 std::sin(aZa+bZb)*std::sin(aZa+bZb) ) ;
216
217 G4complex stack = 2.*I2*F2;
218 stack += result;
219 stack *= OneInterfaceXTRdEdx(energy,gamma,varAngle);
220
221 // result += I2 ;
222 result = std::real(stack);
223
224 return result ;
225}
226
227
228//
229//
230////////////////////////////////////////////////////////////////////////////
231
232
233
234
235
236
237
238
double G4double
Definition: G4Types.hh:83
std::complex< G4double > G4complex
Definition: G4Types.hh:88
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4int verboseLevel
Definition: G4VProcess.hh:356
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double SpectralXTRdEdx(G4double energy) override
G4XTRRegularRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRegularModel")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override