Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4GammaConversionToMuons Class Reference

#include <G4GammaConversionToMuons.hh>

+ Inheritance diagram for G4GammaConversionToMuons:

Public Member Functions

 G4GammaConversionToMuons (const G4String &processName="GammaToMuPair", G4ProcessType type=fElectromagnetic)
 
 ~G4GammaConversionToMuons () override
 
G4bool IsApplicable (const G4ParticleDefinition &) override
 
void BuildPhysicsTable (const G4ParticleDefinition &) override
 
void PrintInfoDefinition ()
 
void SetCrossSecFactor (G4double fac)
 
G4double GetCrossSecFactor () const
 
G4double GetMeanFreePath (const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition) override
 
G4double GetCrossSectionPerAtom (const G4DynamicParticle *aDynamicGamma, const G4Element *anElement)
 
G4VParticleChangePostStepDoIt (const G4Track &aTrack, const G4Step &aStep) override
 
G4double ComputeCrossSectionPerAtom (G4double GammaEnergy, G4int Z)
 
G4double ComputeMeanFreePath (G4double GammaEnergy, const G4Material *aMaterial)
 
- Public Member Functions inherited from G4VDiscreteProcess
 G4VDiscreteProcess (const G4String &aName, G4ProcessType aType=fNotDefined)
 
 G4VDiscreteProcess (G4VDiscreteProcess &)
 
virtual ~G4VDiscreteProcess ()
 
G4VDiscreteProcessoperator= (const G4VDiscreteProcess &)=delete
 
virtual G4double PostStepGetPhysicalInteractionLength (const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
 
virtual G4VParticleChangePostStepDoIt (const G4Track &, const G4Step &)
 
virtual G4double AlongStepGetPhysicalInteractionLength (const G4Track &, G4double, G4double, G4double &, G4GPILSelection *)
 
virtual G4double AtRestGetPhysicalInteractionLength (const G4Track &, G4ForceCondition *)
 
virtual G4VParticleChangeAtRestDoIt (const G4Track &, const G4Step &)
 
virtual G4VParticleChangeAlongStepDoIt (const G4Track &, const G4Step &)
 
- Public Member Functions inherited from G4VProcess
 G4VProcess (const G4String &aName="NoName", G4ProcessType aType=fNotDefined)
 
 G4VProcess (const G4VProcess &right)
 
virtual ~G4VProcess ()
 
G4VProcessoperator= (const G4VProcess &)=delete
 
G4bool operator== (const G4VProcess &right) const
 
G4bool operator!= (const G4VProcess &right) const
 
virtual G4VParticleChangePostStepDoIt (const G4Track &track, const G4Step &stepData)=0
 
virtual G4VParticleChangeAlongStepDoIt (const G4Track &track, const G4Step &stepData)=0
 
virtual G4VParticleChangeAtRestDoIt (const G4Track &track, const G4Step &stepData)=0
 
virtual G4double AlongStepGetPhysicalInteractionLength (const G4Track &track, G4double previousStepSize, G4double currentMinimumStep, G4double &proposedSafety, G4GPILSelection *selection)=0
 
virtual G4double AtRestGetPhysicalInteractionLength (const G4Track &track, G4ForceCondition *condition)=0
 
virtual G4double PostStepGetPhysicalInteractionLength (const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)=0
 
G4double GetCurrentInteractionLength () const
 
void SetPILfactor (G4double value)
 
G4double GetPILfactor () const
 
G4double AlongStepGPIL (const G4Track &track, G4double previousStepSize, G4double currentMinimumStep, G4double &proposedSafety, G4GPILSelection *selection)
 
G4double AtRestGPIL (const G4Track &track, G4ForceCondition *condition)
 
G4double PostStepGPIL (const G4Track &track, G4double previousStepSize, G4ForceCondition *condition)
 
virtual G4bool IsApplicable (const G4ParticleDefinition &)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void PreparePhysicsTable (const G4ParticleDefinition &)
 
virtual G4bool StorePhysicsTable (const G4ParticleDefinition *, const G4String &, G4bool)
 
virtual G4bool RetrievePhysicsTable (const G4ParticleDefinition *, const G4String &, G4bool)
 
const G4StringGetPhysicsTableFileName (const G4ParticleDefinition *, const G4String &directory, const G4String &tableName, G4bool ascii=false)
 
const G4StringGetProcessName () const
 
G4ProcessType GetProcessType () const
 
void SetProcessType (G4ProcessType)
 
G4int GetProcessSubType () const
 
void SetProcessSubType (G4int)
 
virtual void StartTracking (G4Track *)
 
virtual void EndTracking ()
 
virtual void SetProcessManager (const G4ProcessManager *)
 
virtual const G4ProcessManagerGetProcessManager ()
 
virtual void ResetNumberOfInteractionLengthLeft ()
 
G4double GetNumberOfInteractionLengthLeft () const
 
G4double GetTotalNumberOfInteractionLengthTraversed () const
 
G4bool isAtRestDoItIsEnabled () const
 
G4bool isAlongStepDoItIsEnabled () const
 
G4bool isPostStepDoItIsEnabled () const
 
virtual void DumpInfo () const
 
virtual void ProcessDescription (std::ostream &outfile) const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
virtual void SetMasterProcess (G4VProcess *masterP)
 
const G4VProcessGetMasterProcess () const
 
virtual void BuildWorkerPhysicsTable (const G4ParticleDefinition &part)
 
virtual void PrepareWorkerPhysicsTable (const G4ParticleDefinition &)
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VProcess
static const G4StringGetProcessTypeName (G4ProcessType)
 
virtual G4double GetMeanFreePath (const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)=0
 
- Protected Member Functions inherited from G4VProcess
void SubtractNumberOfInteractionLengthLeft (G4double prevStepSize)
 
void ClearNumberOfInteractionLengthLeft ()
 
- Protected Attributes inherited from G4VProcess
const G4ProcessManageraProcessManager = nullptr
 
G4VParticleChangepParticleChange = nullptr
 
G4ParticleChange aParticleChange
 
G4double theNumberOfInteractionLengthLeft = -1.0
 
G4double currentInteractionLength = -1.0
 
G4double theInitialNumberOfInteractionLength = -1.0
 
G4String theProcessName
 
G4String thePhysicsTableFileName
 
G4ProcessType theProcessType = fNotDefined
 
G4int theProcessSubType = -1
 
G4double thePILfactor = 1.0
 
G4int verboseLevel = 0
 
G4bool enableAtRestDoIt = true
 
G4bool enableAlongStepDoIt = true
 
G4bool enablePostStepDoIt = true
 

Detailed Description

Definition at line 60 of file G4GammaConversionToMuons.hh.

Constructor & Destructor Documentation

◆ G4GammaConversionToMuons()

G4GammaConversionToMuons::G4GammaConversionToMuons ( const G4String processName = "GammaToMuPair",
G4ProcessType  type = fElectromagnetic 
)
explicit

Definition at line 60 of file G4GammaConversionToMuons.cc.

62 : G4VDiscreteProcess (processName, type),
63 Mmuon(G4MuonPlus::MuonPlus()->GetPDGMass()),
64 Rc(elm_coupling/Mmuon),
65 LimitEnergy (5.*Mmuon),
66 LowestEnergyLimit (2.*Mmuon),
67 HighestEnergyLimit(1e12*GeV), // ok to 1e12GeV, then LPM suppression
68 Energy5DLimit(0.0),
69 CrossSecFactor(1.),
70 f5Dmodel(nullptr),
71 theGamma(G4Gamma::Gamma()),
72 theMuonPlus(G4MuonPlus::MuonPlus()),
73 theMuonMinus(G4MuonMinus::MuonMinus())
74{
76 MeanFreePath = DBL_MAX;
78 fManager->Register(this);
79}
@ fGammaConversionToMuMu
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
static G4LossTableManager * Instance()
void Register(G4VEnergyLossProcess *p)
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:98
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:406
#define DBL_MAX
Definition: templates.hh:62

◆ ~G4GammaConversionToMuons()

G4GammaConversionToMuons::~G4GammaConversionToMuons ( )
override

Definition at line 83 of file G4GammaConversionToMuons.cc.

84{
85 fManager->DeRegister(this);
86}
void DeRegister(G4VEnergyLossProcess *p)

Member Function Documentation

◆ BuildPhysicsTable()

void G4GammaConversionToMuons::BuildPhysicsTable ( const G4ParticleDefinition p)
overridevirtual

Reimplemented from G4VProcess.

Definition at line 97 of file G4GammaConversionToMuons.cc.

99{ //here no tables, just calling PrintInfoDefinition
101 if(Energy5DLimit > 0.0 && !f5Dmodel) {
102 f5Dmodel = new G4BetheHeitler5DModel();
103 f5Dmodel->SetLeptonPair(theMuonPlus, theMuonMinus);
105 const G4DataVector cuts(numElems);
106 f5Dmodel->Initialise(&p, cuts);
107 }
109}
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
void SetLeptonPair(const G4ParticleDefinition *p1, const G4ParticleDefinition *p2)
static G4EmParameters * Instance()
G4double MaxEnergyFor5DMuPair() const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()

Referenced by G4GammaGeneralProcess::BuildPhysicsTable().

◆ ComputeCrossSectionPerAtom()

G4double G4GammaConversionToMuons::ComputeCrossSectionPerAtom ( G4double  GammaEnergy,
G4int  Z 
)

Definition at line 174 of file G4GammaConversionToMuons.cc.

180{
181 if(Egam <= LowestEnergyLimit) { return 0.0; }
182
184
185 G4double PowThres,Ecor,B,Dn,Zthird,Winfty,WMedAppr,
186 Wsatur,sigfac;
187
188 if(Z==1) // special case of Hydrogen
189 { B=202.4;
190 Dn=1.49;
191 }
192 else
193 { B=183.;
194 Dn=1.54*nist->GetA27(Z);
195 }
196 Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
197 Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
198 WMedAppr=1./(4.*Dn*sqrte*Mmuon);
199 Wsatur=Winfty/WMedAppr;
200 sigfac=4.*fine_structure_const*Z*Z*Rc*Rc;
201 PowThres=1.479+0.00799*Dn;
202 Ecor=-18.+4347./(B*Zthird);
203
204 G4double CorFuc=1.+.04*G4Log(1.+Ecor/Egam);
205 //G4double Eg=pow(1.-4.*Mmuon/Egam,PowThres)*pow( pow(Wsatur,PowSat)+
206 // pow(Egam,PowSat),1./PowSat); // threshold and saturation
207 G4double Eg=G4Exp(G4Log(1.-4.*Mmuon/Egam)*PowThres)*
208 G4Exp(G4Log( G4Exp(G4Log(Wsatur)*PowSat)+G4Exp(G4Log(Egam)*PowSat))/PowSat);
209 G4double CrossSection=7./9.*sigfac*G4Log(1.+WMedAppr*CorFuc*Eg);
210 CrossSection*=CrossSecFactor; // increase the CrossSection by (by default 1)
211 return CrossSection;
212}
double B(double temperature)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
G4double GetA27(G4int Z) const
G4double GetZ13(G4double Z) const
static G4NistManager * Instance()

Referenced by ComputeMeanFreePath(), and GetCrossSectionPerAtom().

◆ ComputeMeanFreePath()

G4double G4GammaConversionToMuons::ComputeMeanFreePath ( G4double  GammaEnergy,
const G4Material aMaterial 
)

Definition at line 133 of file G4GammaConversionToMuons.cc.

137{
138 if(GammaEnergy <= LowestEnergyLimit) { return DBL_MAX; }
139 const G4ElementVector* theElementVector = aMaterial->GetElementVector();
140 const G4double* NbOfAtomsPerVolume = aMaterial->GetVecNbOfAtomsPerVolume();
141
142 G4double SIGMA = 0.0;
143 G4double fact = 1.0;
144 G4double e = GammaEnergy;
145 // low energy approximation as in Bethe-Heitler model
146 if(e < LimitEnergy) {
147 G4double y = (e - LowestEnergyLimit)/(LimitEnergy - LowestEnergyLimit);
148 fact = y*y;
149 e = LimitEnergy;
150 }
151
152 for ( size_t i=0 ; i < aMaterial->GetNumberOfElements(); ++i)
153 {
154 SIGMA += NbOfAtomsPerVolume[i] * fact *
155 ComputeCrossSectionPerAtom(e, (*theElementVector)[i]->GetZasInt());
156 }
157 return (SIGMA > 0.0) ? 1./SIGMA : DBL_MAX;
158}
std::vector< G4Element * > G4ElementVector
G4double ComputeCrossSectionPerAtom(G4double GammaEnergy, G4int Z)
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:188
size_t GetNumberOfElements() const
Definition: G4Material.hh:184
const G4double * GetVecNbOfAtomsPerVolume() const
Definition: G4Material.hh:204

Referenced by G4GammaGeneralProcess::BuildPhysicsTable(), and GetMeanFreePath().

◆ GetCrossSecFactor()

G4double G4GammaConversionToMuons::GetCrossSecFactor ( ) const
inline

Definition at line 85 of file G4GammaConversionToMuons.hh.

85{ return CrossSecFactor;}

◆ GetCrossSectionPerAtom()

G4double G4GammaConversionToMuons::GetCrossSectionPerAtom ( const G4DynamicParticle aDynamicGamma,
const G4Element anElement 
)

Definition at line 162 of file G4GammaConversionToMuons.cc.

167{
168 return ComputeCrossSectionPerAtom(aDynamicGamma->GetKineticEnergy(),
169 anElement->GetZasInt());
170}
G4double GetKineticEnergy() const
G4int GetZasInt() const
Definition: G4Element.hh:131

◆ GetMeanFreePath()

G4double G4GammaConversionToMuons::GetMeanFreePath ( const G4Track aTrack,
G4double  previousStepSize,
G4ForceCondition condition 
)
overridevirtual

Implements G4VDiscreteProcess.

Definition at line 113 of file G4GammaConversionToMuons.cc.

119{
120 const G4DynamicParticle* aDynamicGamma = aTrack.GetDynamicParticle();
121 G4double GammaEnergy = aDynamicGamma->GetKineticEnergy();
122 const G4Material* aMaterial = aTrack.GetMaterial();
123
124 MeanFreePath = (GammaEnergy <= LowestEnergyLimit)
125 ? DBL_MAX : ComputeMeanFreePath(GammaEnergy,aMaterial);
126
127 return MeanFreePath;
128}
G4double ComputeMeanFreePath(G4double GammaEnergy, const G4Material *aMaterial)
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const

◆ IsApplicable()

G4bool G4GammaConversionToMuons::IsApplicable ( const G4ParticleDefinition part)
overridevirtual

Reimplemented from G4VProcess.

Definition at line 90 of file G4GammaConversionToMuons.cc.

91{
92 return (&part == theGamma);
93}

◆ PostStepDoIt()

G4VParticleChange * G4GammaConversionToMuons::PostStepDoIt ( const G4Track aTrack,
const G4Step aStep 
)
overridevirtual

Reimplemented from G4VDiscreteProcess.

Definition at line 226 of file G4GammaConversionToMuons.cc.

232{
234 const G4Material* aMaterial = aTrack.GetMaterial();
235
236 // current Gamma energy and direction, return if energy too low
237 const G4DynamicParticle *aDynamicGamma = aTrack.GetDynamicParticle();
238 G4double Egam = aDynamicGamma->GetKineticEnergy();
239 if (Egam <= LowestEnergyLimit) {
240 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
241 }
242 //
243 // Kill the incident photon
244 //
248
249 if (Egam <= Energy5DLimit) {
250 std::vector<G4DynamicParticle*> fvect;
251 f5Dmodel->SampleSecondaries(&fvect, aTrack.GetMaterialCutsCouple(),
252 aTrack.GetDynamicParticle(), 0.0, DBL_MAX);
254 for(auto dp : fvect) { aParticleChange.AddSecondary(dp); }
255 return G4VDiscreteProcess::PostStepDoIt(aTrack,aStep);
256 }
257
258 G4ParticleMomentum GammaDirection = aDynamicGamma->GetMomentumDirection();
259
260 // select randomly one element constituting the material
261 const G4Element* anElement = SelectRandomAtom(aDynamicGamma, aMaterial);
262 G4int Z = anElement->GetZasInt();
264
265 G4double B,Dn;
266 G4double A027 = nist->GetA27(Z);
267
268 if(Z==1) // special case of Hydrogen
269 { B=202.4;
270 Dn=1.49;
271 }
272 else
273 { B=183.;
274 Dn=1.54*A027;
275 }
276 G4double Zthird=1./nist->GetZ13(Z); // Z**(-1/3)
277 G4double Winfty=B*Zthird*Mmuon/(Dn*electron_mass_c2);
278
279 G4double C1Num=0.138*A027;
280 G4double C1Num2=C1Num*C1Num;
281 G4double C2Term2=electron_mass_c2/(183.*Zthird*Mmuon);
282
283 G4double GammaMuonInv=Mmuon/Egam;
284
285 // generate xPlus according to the differential cross section by rejection
286 G4double xmin=(Egam < LimitEnergy) ? GammaMuonInv : .5-sqrt(.25-GammaMuonInv);
287 G4double xmax=1.-xmin;
288
289 G4double Ds2=(Dn*sqrte-2.);
290 G4double sBZ=sqrte*B*Zthird/electron_mass_c2;
291 G4double LogWmaxInv=1./G4Log(Winfty*(1.+2.*Ds2*GammaMuonInv)
292 /(1.+2.*sBZ*Mmuon*GammaMuonInv));
293 G4double xPlus,xMinus,xPM,result,W;
294 G4int nn = 0;
295 const G4int nmax = 1000;
296 do {
297 xPlus=xmin+G4UniformRand()*(xmax-xmin);
298 xMinus=1.-xPlus;
299 xPM=xPlus*xMinus;
300 G4double del=Mmuon*Mmuon/(2.*Egam*xPM);
301 W=Winfty*(1.+Ds2*del/Mmuon)/(1.+sBZ*del);
302 G4double xxp=1.-4./3.*xPM; // the main xPlus dependence
303 result=(xxp > 0.) ? xxp*G4Log(W)*LogWmaxInv : 0.0;
304 if(result>1.) {
305 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
306 << " in dSigxPlusGen, result=" << result << " > 1" << G4endl;
307 }
308 ++nn;
309 if(nn >= nmax) { break; }
310 }
311 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
312 while (G4UniformRand() > result);
313
314 // now generate the angular variables via the auxilary variables t,psi,rho
315 G4double t;
316 G4double psi;
317 G4double rho;
318
319 G4double a3 = (GammaMuonInv/(2.*xPM));
320 G4double a33 = a3*a3;
321 G4double f1;
322 G4double b1 = 1./(4.*C1Num2);
323 G4double b3 = b1*b1*b1;
324 G4double a21 = a33 + b1;
325
326 G4double f1_max=-(1.-xPM)*(2.*b1+(a21+a33)*G4Log(a33/a21))/(2*b3);
327
328 G4double thetaPlus,thetaMinus,phiHalf; // final angular variables
329 nn = 0;
330 // t, psi, rho generation start (while angle < pi)
331 do {
332 //generate t by the rejection method
333 do {
334 ++nn;
335 t=G4UniformRand();
336 G4double a34=a33/(t*t);
337 G4double a22 = a34 + b1;
338 if(std::abs(b1)<0.0001*a34)
339 // special case of a34=a22 because of logarithm accuracy
340 {
341 f1=(1.-2.*xPM+4.*xPM*t*(1.-t))/(12.*a34*a34*a34*a34);
342 }
343 else
344 {
345 f1=-(1.-2.*xPM+4.*xPM*t*(1.-t))*(2.*b1+(a22+a34)*G4Log(a34/a22))/(2*b3);
346 }
347 if(f1<0.0 || f1> f1_max) // should never happend
348 {
349 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
350 << "outside allowed range f1=" << f1
351 << " is set to zero, a34 = "<< a34 << " a22 = "<<a22<<"."
352 << G4endl;
353 f1 = 0.0;
354 }
355 if(nn > nmax) { break; }
356 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
357 } while ( G4UniformRand()*f1_max > f1);
358 // generate psi by the rejection method
359 G4double f2_max=1.-2.*xPM*(1.-4.*t*(1.-t));
360 // long version
361 G4double f2;
362 do {
363 ++nn;
364 psi=twopi*G4UniformRand();
365 f2=1.-2.*xPM+4.*xPM*t*(1.-t)*(1.+cos(2.*psi));
366 if(f2<0 || f2> f2_max) // should never happend
367 {
368 G4cout << "G4GammaConversionToMuons::PostStepDoIt WARNING:"
369 << "outside allowed range f2=" << f2 << " is set to zero"
370 << G4endl;
371 f2 = 0.0;
372 }
373 if(nn >= nmax) { break; }
374 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
375 } while ( G4UniformRand()*f2_max > f2);
376
377 // generate rho by direct transformation
378 G4double C2Term1=GammaMuonInv/(2.*xPM*t);
379 G4double C22 = C2Term1*C2Term1+C2Term2*C2Term2;
380 G4double C2=4.*C22*C22/sqrt(xPM);
381 G4double rhomax=(1./t-1.)*1.9/A027;
382 G4double beta=G4Log( (C2+rhomax*rhomax*rhomax*rhomax)/C2 );
383 rho=G4Exp(G4Log(C2 *( G4Exp(beta*G4UniformRand())-1. ))*0.25);
384
385 //now get from t and psi the kinematical variables
386 G4double u=sqrt(1./t-1.);
387 G4double xiHalf=0.5*rho*cos(psi);
388 phiHalf=0.5*rho/u*sin(psi);
389
390 thetaPlus =GammaMuonInv*(u+xiHalf)/xPlus;
391 thetaMinus=GammaMuonInv*(u-xiHalf)/xMinus;
392
393 // protection against infinite loop
394 if(nn > nmax) {
395 if(std::abs(thetaPlus)>pi) { thetaPlus = 0.0; }
396 if(std::abs(thetaMinus)>pi) { thetaMinus = 0.0; }
397 }
398
399 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko
400 } while ( std::abs(thetaPlus)>pi || std::abs(thetaMinus) >pi);
401
402 // now construct the vectors
403 // azimuthal symmetry, take phi0 at random between 0 and 2 pi
404 G4double phi0=twopi*G4UniformRand();
405 G4double EPlus=xPlus*Egam;
406 G4double EMinus=xMinus*Egam;
407
408 // mu+ mu- directions for gamma in z-direction
409 G4ThreeVector MuPlusDirection ( sin(thetaPlus) *cos(phi0+phiHalf),
410 sin(thetaPlus) *sin(phi0+phiHalf), cos(thetaPlus) );
411 G4ThreeVector MuMinusDirection (-sin(thetaMinus)*cos(phi0-phiHalf),
412 -sin(thetaMinus) *sin(phi0-phiHalf), cos(thetaMinus) );
413 // rotate to actual gamma direction
414 MuPlusDirection.rotateUz(GammaDirection);
415 MuMinusDirection.rotateUz(GammaDirection);
417 // create G4DynamicParticle object for the particle1
418 G4DynamicParticle* aParticle1 =
419 new G4DynamicParticle(theMuonPlus,MuPlusDirection,EPlus-Mmuon);
420 aParticleChange.AddSecondary(aParticle1);
421 // create G4DynamicParticle object for the particle2
422 G4DynamicParticle* aParticle2 =
423 new G4DynamicParticle(theMuonMinus,MuMinusDirection,EMinus-Mmuon);
424 aParticleChange.AddSecondary(aParticle2);
425 // Reset NbOfInteractionLengthLeft and return aParticleChange
426 return G4VDiscreteProcess::PostStepDoIt( aTrack, aStep );
427}
@ fStopAndKill
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
const double C2
#define G4UniformRand()
Definition: Randomize.hh:52
void SampleSecondaries(std::vector< G4DynamicParticle * > *fvect, const G4MaterialCutsCouple *couple, const G4DynamicParticle *aDynamicGamma, G4double, G4double) override
const G4ThreeVector & GetMomentumDirection() const
void AddSecondary(G4Track *aSecondary)
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
virtual void Initialize(const G4Track &)
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
void ProposeTrackStatus(G4TrackStatus status)
void SetNumberOfSecondaries(G4int totSecondaries)
G4ParticleChange aParticleChange
Definition: G4VProcess.hh:327
const G4double pi

Referenced by G4GammaGeneralProcess::PostStepDoIt().

◆ PrintInfoDefinition()

void G4GammaConversionToMuons::PrintInfoDefinition ( )

Definition at line 460 of file G4GammaConversionToMuons.cc.

461{
462 G4String comments ="gamma->mu+mu- Bethe Heitler process, SubType= ";
463 G4cout << G4endl << GetProcessName() << ": " << comments
465 G4cout << " good cross section parametrization from "
466 << G4BestUnit(LowestEnergyLimit,"Energy")
467 << " to " << HighestEnergyLimit/GeV << " GeV for all Z." << G4endl;
468}
G4int GetProcessSubType() const
Definition: G4VProcess.hh:400
const G4String & GetProcessName() const
Definition: G4VProcess.hh:382

Referenced by BuildPhysicsTable().

◆ SetCrossSecFactor()

void G4GammaConversionToMuons::SetCrossSecFactor ( G4double  fac)

Definition at line 216 of file G4GammaConversionToMuons.cc.

218{
219 CrossSecFactor=fac;
220 G4cout << "The cross section for GammaConversionToMuons is artificially "
221 << "increased by the CrossSecFactor=" << CrossSecFactor << G4endl;
222}

Referenced by G4EmExtraPhysics::ConstructProcess().


The documentation for this class was generated from the following files: