Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Evaporation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Hadronic Process: Nuclear De-excitations
28// by V. Lara (Oct 1998)
29//
30// Alex Howard - added protection for negative probabilities in the sum, 14/2/07
31//
32// Modif (03 September 2008) by J. M. Quesada for external choice of inverse
33// cross section option
34// JMQ (06 September 2008) Also external choices have been added for
35// superimposed Coulomb barrier (if useSICBis set true, by default is false)
36//
37// V.Ivanchenko (27 July 2009) added G4EvaporationDefaultGEMFactory option
38// V.Ivanchenko (10 May 2010) rewrited BreakItUp method: do not make new/delete
39// photon channel first, fission second,
40// added G4UnstableFragmentBreakUp to decay
41// unphysical fragments (like 2n or 2p),
42// use Z and A integer
43// V.Ivanchenko (22 April 2011) added check if a fragment can be deexcited
44// by the FermiBreakUp model
45// V.Ivanchenko (23 January 2012) added pointer of G4VPhotonEvaporation
46// V.Ivanchenko (6 May 2013) added check of existence of residual ion
47// in the ion table
48
49#include "G4Evaporation.hh"
50#include "G4SystemOfUnits.hh"
55#include "G4NistManager.hh"
56#include "G4VFermiBreakUp.hh"
59#include "G4ParticleTable.hh"
60#include "G4IonTable.hh"
61#include "G4NuclearLevelData.hh"
62#include "G4LevelManager.hh"
64#include "Randomize.hh"
65
67 : G4VEvaporation(),fVerbose(0),nChannels(0),minExcitation(0.1*keV),
68 isInitialised(false)
69{
70 if(photoEvaporation) { SetPhotonEvaporation(photoEvaporation); }
72
74 theChannelFactory = nullptr;
75
79 unstableBreakUp = new G4UnstableFragmentBreakUp();
80 /*
81 G4cout << "G4Evaporation() " << this << " thePhotonEvaporation: "
82 << photoEvaporation << " UnstableFragmentBreakUp: "
83 << unstableBreakUp << G4endl;
84 */
85}
86
88{
89 delete unstableBreakUp;
90}
91
93{
94 if(isInitialised) { return; }
95
96 G4DeexPrecoParameters* param = fLevelData->GetParameters();
97 minExcitation = param->GetMinExcitation();
98 fVerbose = param->GetVerbose();
99 unstableBreakUp->SetVerbose(fVerbose);
100
102 if(type == fCombined) { SetCombinedChannel(); }
103 else if(type == fGEM) { SetGEMChannel(); }
104 else if(type == fEvaporation) { SetDefaultChannel(); }
105 else if(type == fGEMVI) { SetGEMVIChannel(); }
106
107 isInitialised = true;
108}
109
110void G4Evaporation::InitialiseChannelFactory()
111{
113 nChannels = theChannels->size();
114 probabilities.resize(nChannels, 0.0);
115
116 if(fVerbose > 1) {
117 G4cout << "### G4Evaporation::InitialiseChannelFactory for "
118 << nChannels << " channels " << this << G4endl;
119 }
120 for(size_t i=0; i<nChannels; ++i) {
121 (*theChannels)[i]->SetOPTxs(OPTxs);
122 (*theChannels)[i]->Initialise();
123 }
124}
125
127{
132 delete theChannelFactory;
133 }
135 InitialiseChannelFactory();
136 }
137}
138
140{
141 if(fGEM != channelType) {
145 delete theChannelFactory;
146 }
148 InitialiseChannelFactory();
149 }
150}
151
153{
154 if(fGEMVI != channelType) {
158 delete theChannelFactory;
159 }
161 InitialiseChannelFactory();
162 }
163}
164
166{
167 if(fCombined != channelType) {
171 delete theChannelFactory;
172 }
175 InitialiseChannelFactory();
176 }
177}
178
180 G4Fragment* theResidualNucleus)
181{
182 if(!isInitialised) { InitialiseChannels(); }
183
184 G4double totprob, prob, oldprob = 0.0;
185 size_t maxchannel, i;
186
187 G4int Amax = theResidualNucleus->GetA_asInt();
188 if(fVerbose > 1) {
189 G4cout << "### G4Evaporation::BreakItUp loop" << G4endl;
190 }
191
192 // Starts loop over evaporated particles, loop is limited by number
193 // of nucleons
194 for(G4int ia=0; ia<Amax; ++ia) {
195
196 // g,n,p and light fragments - evaporation is finished
197 G4int Z = theResidualNucleus->GetZ_asInt();
198 G4int A = theResidualNucleus->GetA_asInt();
199 if(A <= 1) { break; }
200 G4double Eex = theResidualNucleus->GetExcitationEnergy();
201
202 // stop deecitation loop if residual can be deexcited by FBU
203 if(theFBU->IsApplicable(Z, A, Eex)) { break; }
204
205 // check if it is stable, then finish evaporation
206 G4double abun = nist->GetIsotopeAbundance(Z, A);
207 // stop deecitation loop in the case of a cold stable fragment
208 if(Eex <= minExcitation &&
209 (abun > 0.0 || (A == 3 && (Z == 1 || Z == 2)))) { break; }
210
211 totprob = 0.0;
212 maxchannel = nChannels;
213 if(fVerbose > 1) {
214 G4cout << "Evaporation# " << ia << " Z= " << Z << " A= " << A
215 << " Eex(MeV)= " << theResidualNucleus->GetExcitationEnergy()
216 << " aban= " << abun << G4endl;
217 }
218 // loop over evaporation channels
219 for(i=0; i<nChannels; ++i) {
220 prob = (*theChannels)[i]->GetEmissionProbability(theResidualNucleus);
221 if(fVerbose > 2 && prob > 0.0) {
222 G4cout << " Channel# " << i << " prob= " << prob << G4endl;
223 }
224 totprob += prob;
225 probabilities[i] = totprob;
226
227 // if two recent probabilities are near zero stop computations
228 if(i>=8 && prob > 0.0) {
229 if(prob <= totprob*1.e-8 && oldprob <= totprob*1.e-8) {
230 maxchannel = i+1;
231 break;
232 }
233 }
234 oldprob = prob;
235 }
236
237 // photon evaporation in the case of no other channels available
238 // do evaporation chain and return back ground state fragment
239 if(0.0 < totprob && probabilities[0] == totprob) {
240 if(fVerbose > 1) {
241 G4cout << "$$$ Start chain of gamma evaporation" << G4endl;
242 }
243 (*theChannels)[0]->BreakUpChain(theResult, theResidualNucleus);
244 totprob = 0.0;
245 }
246
247 // stable fragment - evaporation is finished
248 if(0.0 == totprob) {
249
250 // release fragment known to DB
251 if(fLevelData->GetLevelManager(Z, A)) { break; }
252
253 // if fragment is exotic, then it forced to decay
254 // if success, then decay product is added to results
255 if(fVerbose > 1) {
256 G4cout << "$$$ Decay exotic fragment" << G4endl;
257 }
258 if(unstableBreakUp->BreakUpChain(theResult, theResidualNucleus)) {
259 continue;
260 }
261 // release if it is not possible to decay
262 break;
263 }
264
265 // select channel
266 totprob *= G4UniformRand();
267 // loop over evaporation channels
268 for(i=0; i<maxchannel; ++i) { if(probabilities[i] >= totprob) { break; } }
269
270 if(fVerbose > 1) { G4cout << "$$$ Channel # " << i << G4endl; }
271 G4Fragment* frag = (*theChannels)[i]->EmittedFragment(theResidualNucleus);
272 if(fVerbose > 2 && frag) { G4cout << " " << *frag << G4endl; }
273
274 // normaly a fragment should be created
275 if(frag) { theResult->push_back(frag); }
276 else { break; }
277 }
278}
double A(double temperature)
@ fEvaporation
std::vector< G4Fragment * > G4FragmentVector
Definition: G4Fragment.hh:63
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
G4DeexChannelType GetDeexChannelsType() const
G4double GetMinExcitation() const
G4Evaporation(G4VEvaporationChannel *photoEvaporation=nullptr)
virtual void InitialiseChannels() final
void SetGEMChannel()
void SetDefaultChannel()
void SetCombinedChannel()
virtual ~G4Evaporation()
void SetGEMVIChannel()
virtual void BreakFragment(G4FragmentVector *, G4Fragment *theNucleus) final
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:275
G4int GetZ_asInt() const
Definition: G4Fragment.hh:263
G4int GetA_asInt() const
Definition: G4Fragment.hh:258
static G4NistManager * Instance()
G4double GetIsotopeAbundance(G4int Z, G4int N) const
G4DeexPrecoParameters * GetParameters()
const G4LevelManager * GetLevelManager(G4int Z, G4int A)
static G4NuclearLevelData * GetInstance()
G4IonTable * GetIonTable() const
static G4ParticleTable * GetParticleTable()
virtual G4bool BreakUpChain(G4FragmentVector *, G4Fragment *) final
virtual std::vector< G4VEvaporationChannel * > * GetChannel()=0
G4VFermiBreakUp * theFBU
G4VEvaporationChannel * thePhotonEvaporation
virtual void SetPhotonEvaporation(G4VEvaporationChannel *ptr)
G4VEvaporationFactory * theChannelFactory
std::vector< G4VEvaporationChannel * > * theChannels
virtual G4bool IsApplicable(G4int Z, G4int A, G4double mass) const =0