Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4RPGAntiProtonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
29#include "G4Exp.hh"
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile* originalIncident = &aTrack;
39
40 if (originalIncident->GetKineticEnergy() <= 0.1*MeV) {
44 return &theParticleChange;
45 }
46
47 //
48 // create the target particle
49 //
50 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
51
52 if( verboseLevel > 1 )
53 {
54 const G4Material *targetMaterial = aTrack.GetMaterial();
55 G4cout << "G4RPGAntiProtonInelastic::ApplyYourself called" << G4endl;
56 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
57 G4cout << "target material = " << targetMaterial->GetName() << ", ";
58 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
59 << G4endl;
60 }
61 //
62 // Fermi motion and evaporation
63 // As of Geant3, the Fermi energy calculation had not been Done
64 //
65 G4double ek = originalIncident->GetKineticEnergy()/MeV;
66 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
67 G4ReactionProduct modifiedOriginal;
68 modifiedOriginal = *originalIncident;
69
70 G4double tkin = targetNucleus.Cinema( ek );
71 ek += tkin;
72 modifiedOriginal.SetKineticEnergy( ek*MeV );
73 G4double et = ek + amas;
74 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
75 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
76 if( pp > 0.0 )
77 {
78 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
79 modifiedOriginal.SetMomentum( momentum * (p/pp) );
80 }
81 //
82 // calculate black track energies
83 //
84 tkin = targetNucleus.EvaporationEffects( ek );
85 ek -= tkin;
86 modifiedOriginal.SetKineticEnergy( ek*MeV );
87 et = ek + amas;
88 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
89 pp = modifiedOriginal.GetMomentum().mag()/MeV;
90 if( pp > 0.0 )
91 {
92 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
93 modifiedOriginal.SetMomentum( momentum * (p/pp) );
94 }
95 G4ReactionProduct currentParticle = modifiedOriginal;
96 G4ReactionProduct targetParticle;
97 targetParticle = *originalTarget;
98 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
99 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
100 G4bool incidentHasChanged = false;
101 G4bool targetHasChanged = false;
102 G4bool quasiElastic = false;
103 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
104 G4int vecLen = 0;
105 vec.Initialize( 0 );
106
107 const G4double cutOff = 0.1;
108 const G4double anni = std::min( 1.3*originalIncident->GetTotalMomentum()/GeV, 0.4 );
109
110 if( (currentParticle.GetKineticEnergy()/MeV > cutOff) ||
111 (G4UniformRand() > anni) )
112 Cascade( vec, vecLen,
113 originalIncident, currentParticle, targetParticle,
114 incidentHasChanged, targetHasChanged, quasiElastic );
115 else
116 quasiElastic = true;
117
118 CalculateMomenta( vec, vecLen,
119 originalIncident, originalTarget, modifiedOriginal,
120 targetNucleus, currentParticle, targetParticle,
121 incidentHasChanged, targetHasChanged, quasiElastic );
122
123 SetUpChange( vec, vecLen,
124 currentParticle, targetParticle,
125 incidentHasChanged );
126
127 delete originalTarget;
128 return &theParticleChange;
129}
130
131
132void G4RPGAntiProtonInelastic::Cascade(
134 G4int& vecLen,
135 const G4HadProjectile *originalIncident,
136 G4ReactionProduct &currentParticle,
137 G4ReactionProduct &targetParticle,
138 G4bool &incidentHasChanged,
139 G4bool &targetHasChanged,
140 G4bool &quasiElastic )
141{
142 // Derived from H. Fesefeldt's original FORTRAN code CASPB
143 // AntiProton undergoes interaction with nucleon within a nucleus. Check if it is
144 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
145 // occurs and input particle is degraded in energy. No other particles are produced.
146 // If reaction is possible, find the correct number of pions/protons/neutrons
147 // produced using an interpolation to multiplicity data. Replace some pions or
148 // protons/neutrons by kaons or strange baryons according to the average
149 // multiplicity per Inelastic reaction.
150
151 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
152 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
153 const G4double pOriginal = originalIncident->GetTotalMomentum()/MeV;
154 const G4double targetMass = targetParticle.GetMass()/MeV;
155 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
156 targetMass*targetMass +
157 2.0*targetMass*etOriginal );
158 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
159
160 static G4ThreadLocal G4bool first = true;
161 const G4int numMul = 1200;
162 const G4int numMulA = 400;
163 const G4int numSec = 60;
164 static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
165 static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
166 static G4ThreadLocal G4double protmulA[numMulA], protnormA[numSec]; // proton constants
167 static G4ThreadLocal G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
168 // np = number of pi+, nneg = number of pi-, nz = number of pi0
169 G4int counter, nt=0, np=0, nneg=0, nz=0;
170 G4double test;
171 const G4double c = 1.25;
172 const G4double b[] = { 0.7, 0.7 };
173
174 if (first) { // compute normalization constants, this will only be Done once
175 first = false;
176 G4int i;
177 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
178 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
179 counter = -1;
180 for (np=0; np<(numSec/3); ++np ) {
181 for (nneg=std::max(0,np-1); nneg<=(np+1); ++nneg ) {
182 for (nz=0; nz<numSec/3; ++nz ) {
183 if (++counter < numMul ) {
184 nt = np+nneg+nz;
185 if (nt>0 && nt<=numSec ) {
186 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187 protnorm[nt-1] += protmul[counter];
188 }
189 }
190 }
191 }
192 }
193
194 for (i=0; i<numMul; ++i )neutmul[i] = 0.0;
195 for (i=0; i<numSec; ++i )neutnorm[i] = 0.0;
196 counter = -1;
197 for (np=0; np<numSec/3; ++np ) {
198 for( nneg=np; nneg<=(np+2); ++nneg )
199 {
200 for( nz=0; nz<numSec/3; ++nz )
201 {
202 if( ++counter < numMul )
203 {
204 nt = np+nneg+nz;
205 if( (nt>0) && (nt<=numSec) )
206 {
207 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208 neutnorm[nt-1] += neutmul[counter];
209 }
210 }
211 }
212 }
213 }
214
215 for (i=0; i<numSec; ++i ) {
216 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218 }
219
220 // do the same for annihilation channels
221
222 for (i=0; i<numMulA; ++i )protmulA[i] = 0.0;
223 for (i=0; i<numSec; ++i )protnormA[i] = 0.0;
224 counter = -1;
225
226 for (np=0; np<(numSec/3); ++np ) {
227 nneg = np;
228 for (nz=0; nz<numSec/3; ++nz ) {
229 if ( ++counter < numMulA ) {
230 nt = np+nneg+nz;
231 if ( nt>1 && nt<=numSec ) {
232 protmulA[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
233 protnormA[nt-1] += protmulA[counter];
234 }
235 }
236 }
237 }
238
239 for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
240 for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
241 counter = -1;
242
243 for (np=0; np<numSec/3; ++np ) {
244 nneg = np+1;
245 for (nz=0; nz<numSec/3; ++nz ) {
246 if (++counter < numMulA ) {
247 nt = np+nneg+nz;
248 if ( (nt>1) && (nt<=numSec) ) {
249 neutmulA[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
250 neutnormA[nt-1] += neutmulA[counter];
251 }
252 }
253 }
254 }
255 for (i=0; i<numSec; ++i) {
256 if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
257 if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
258 }
259 } // end of initialization
260
261 // initialization is OK
262
263 const G4double expxu = 82.; // upper bound for arg. of exp
264 const G4double expxl = -expxu; // lower bound for arg. of exp
265
270
271 const G4double anhl[] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.90,
272 0.6,0.52,0.47,0.44,0.41,0.39,0.37,0.35,0.34,0.24,
273 0.19,0.15,0.12,0.10,0.09,0.07,0.06,0.05,0.0};
274
275 G4int iplab = G4int( pOriginal/GeV*10.0 );
276 if( iplab > 9 )iplab = G4int( pOriginal/GeV ) + 9;
277 if( iplab > 18 )iplab = G4int( pOriginal/GeV/10.0 ) + 18;
278 if( iplab > 27 )iplab = 28;
279 if (G4UniformRand() > anhl[iplab] ) {
280 if (availableEnergy <= aPiPlus->GetPDGMass()/MeV ) {
281 quasiElastic = true;
282 return;
283 }
284 G4int ieab = static_cast<G4int>(availableEnergy*5.0/GeV);
285 const G4double supp[] = {0.,0.4,0.55,0.65,0.75,0.82,0.86,0.90,0.94,0.98};
286 G4double w0, wp, wt, wm;
287 if ( (availableEnergy < 2.0*GeV) && (G4UniformRand() >= supp[ieab]) ) {
288 //
289 // suppress high multiplicity events at low momentum
290 // only one pion will be produced
291 //
292 np = nneg = nz = 0;
293 if ( targetParticle.GetDefinition() == aProton ) {
294 test = G4Exp( std::min( expxu, std::max( expxl, -(1.0+b[1])*(1.0+b[1])/(2.0*c*c) ) ) );
295 w0 = test;
296 wp = test;
297 test = G4Exp( std::min( expxu, std::max( expxl, -(-1.0+b[1])*(-1.0+b[1])/(2.0*c*c) ) ) );
298 wm = test;
299 wt = w0+wp+wm;
300 wp += w0;
301 G4double ran = G4UniformRand();
302 if( ran < w0/wt )
303 nz = 1;
304 else if( ran < wp/wt )
305 np = 1;
306 else
307 nneg = 1;
308 } else { // target is a neutron
309 test = G4Exp( std::min( expxu, std::max( expxl, -(1.0+b[0])*(1.0+b[0])/(2.0*c*c) ) ) );
310 w0 = test;
311 test = G4Exp( std::min( expxu, std::max( expxl, -(-1.0+b[0])*(-1.0+b[0])/(2.0*c*c) ) ) );
312 wm = test;
313 G4double ran = G4UniformRand();
314 if( ran < w0/(w0+wm) )
315 nz = 1;
316 else
317 nneg = 1;
318 }
319 } else { // (availableEnergy >= 2.0*GeV) || (random number < supp[ieab])
320 G4double n, anpn;
321 GetNormalizationConstant( availableEnergy, n, anpn );
322 G4double ran = G4UniformRand();
323 G4double dum, excs = 0.0;
324 if (targetParticle.GetDefinition() == aProton ) {
325 counter = -1;
326 for (np=0; np<numSec/3 && ran>=excs; ++np ) {
327 for (nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg ) {
328 for (nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
329 if (++counter < numMul ) {
330 nt = np+nneg+nz;
331 if ((nt>0) && (nt<=numSec) ) {
332 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
333 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
334 if (std::fabs(dum) < 1.0 ) {
335 if( test >= 1.0e-10 )excs += dum*test;
336 }
337 else
338 excs += dum*test;
339 }
340 }
341 }
342 }
343 }
344 if (ran >= excs ) { // 3 previous loops continued to the end
345 quasiElastic = true;
346 return;
347 }
348 } else { // target must be a neutron
349 counter = -1;
350 for ( np=0; np<numSec/3 && ran>=excs; ++np ) {
351 for ( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg ) {
352 for ( nz=0; nz<numSec/3 && ran>=excs; ++nz ) {
353 if ( ++counter < numMul ) {
354 nt = np+nneg+nz;
355 if ( (nt>0) && (nt<=numSec) ) {
356 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
357 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
358 if ( std::fabs(dum) < 1.0 )
359 {
360 if( test >= 1.0e-10 )excs += dum*test;
361 }
362 else
363 excs += dum*test;
364 }
365 }
366 }
367 }
368 }
369 if( ran >= excs ) { // 3 previous loops continued to the end
370 quasiElastic = true;
371 return;
372 }
373 }
374 np--; nneg--; nz--;
375
376 } // end if availableEnergy
377
378 if (targetParticle.GetDefinition() == aProton ) {
379 switch( np-nneg )
380 {
381 case 0:
382 if( G4UniformRand() < 0.33 )
383 {
384 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
385 targetParticle.SetDefinitionAndUpdateE( aNeutron );
386 incidentHasChanged = true;
387 targetHasChanged = true;
388 }
389 break;
390 case 1:
391 targetParticle.SetDefinitionAndUpdateE( aNeutron );
392 targetHasChanged = true;
393 break;
394 default:
395 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
396 incidentHasChanged = true;
397 break;
398 }
399
400 } else { // target must be a neutron
401 switch( np-nneg )
402 {
403 case -1:
404 if( G4UniformRand() < 0.5 )
405 {
406 targetParticle.SetDefinitionAndUpdateE( aProton );
407 targetHasChanged = true;
408 }
409 else
410 {
411 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
412 incidentHasChanged = true;
413 }
414 break;
415 case 0:
416 break;
417 default:
418 currentParticle.SetDefinitionAndUpdateE( anAntiNeutron );
419 targetParticle.SetDefinitionAndUpdateE( aProton );
420 incidentHasChanged = true;
421 targetHasChanged = true;
422 break;
423 }
424 }
425
426 } else { // random number <= anhl[iplab]
427 if (centerofmassEnergy <= 2*aPiPlus->GetPDGMass()/MeV ) {
428 quasiElastic = true;
429 return;
430 }
431
432 // annihilation channels
433
434 G4double n, anpn;
435 GetNormalizationConstant( -centerofmassEnergy, n, anpn );
436 G4double ran = G4UniformRand();
437 G4double dum, excs = 0.0;
438 if (targetParticle.GetDefinition() == aProton ) {
439 counter = -1;
440 for( np=0; (np<numSec/3) && (ran>=excs); ++np )
441 {
442 nneg = np;
443 for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
444 {
445 if( ++counter < numMulA )
446 {
447 nt = np+nneg+nz;
448 if( (nt>1) && (nt<=numSec) )
449 {
450 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
451 dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
452 if( std::abs(dum) < 1.0 )
453 {
454 if( test >= 1.0e-10 )excs += dum*test;
455 }
456 else
457 excs += dum*test;
458 }
459 }
460 }
461 }
462 } else { // target must be a neutron
463 counter = -1;
464 for( np=0; (np<numSec/3) && (ran>=excs); ++np )
465 {
466 nneg = np+1;
467 for( nz=0; (nz<numSec/3) && (ran>=excs); ++nz )
468 {
469 if( ++counter < numMulA )
470 {
471 nt = np+nneg+nz;
472 if( (nt>1) && (nt<=numSec) )
473 {
474 test = G4Exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
475 dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
476 if( std::fabs(dum) < 1.0 )
477 {
478 if( test >= 1.0e-10 )excs += dum*test;
479 }
480 else
481 excs += dum*test;
482 }
483 }
484 }
485 }
486 }
487 if ( ran >= excs ) { // 3 previous loops continued to the end
488 quasiElastic = true;
489 return;
490 }
491 np--; nz--;
492 currentParticle.SetMass( 0.0 );
493 targetParticle.SetMass( 0.0 );
494 }
495
496 G4int loop = 0;
498 ed << " While count exceeded " << G4endl;
499 while(np + nneg + nz < 3) { /* Loop checking, 01.09.2015, D.Wright */
500 nz++;
501 loop++;
502 if (loop > 1000) {
503 G4Exception("G4RPGAntiProtonInelastic::Cascade()", "HAD_RPG_100", JustWarning, ed);
504 break;
505 }
506 }
507
508 SetUpPions( np, nneg, nz, vec, vecLen );
509 return;
510}
511
512 /* end of file */
513
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:35
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
@ isAlive
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
static G4AntiNeutron * AntiNeutron()
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:59
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
const G4String & GetName() const
Definition: G4Material.hh:175
static G4Neutron * Neutron()
Definition: G4Neutron.cc:103
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:278
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:382
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:97
static G4Proton * Proton()
Definition: G4Proton.cc:92
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
const G4ParticleDefinition * GetDefinition() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(const G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4double GetMass() const
void SetMass(const G4double mas)
const G4double pi
#define G4ThreadLocal
Definition: tls.hh:77