63{
66
73
80 G4cout <<
"G4LEnp:ApplyYourself: incident particle: "
82 G4cout <<
"P = " << P/GeV <<
" GeV/c"
83 << ", Px = " << Px/GeV << " GeV/c"
84 << ", Py = " << Py/GeV << " GeV/c"
85 <<
", Pz = " << Pz/GeV <<
" GeV/c" <<
G4endl;
86 G4cout <<
"E = " << E/GeV <<
" GeV"
87 << ", kinetic energy = " << ek/GeV << " GeV"
88 << ", mass = " << E0/GeV << " GeV"
89 <<
", charge = " << Q <<
G4endl;
92 << ", Z = " << Z
93 << ", atomic mass "
96
97
98
99 E += proton_mass_c2;
101 E0 = std::sqrt(std::abs(E02));
102 if (E02 < 0)E0 *= -1;
103 Q += Z;
105 G4cout <<
"E = " << E/GeV <<
" GeV"
106 << ", mass = " << E0/GeV << " GeV"
107 <<
", charge = " << Q <<
G4endl;
108 }
109
110
111
113 G4int je2 = NENERGY - 1;
114 ek = ek/GeV;
115 do {
116 G4int midBin = (je1 + je2)/2;
117 if (ek < elab[midBin])
118 je2 = midBin;
119 else
120 je1 = midBin;
121 } while (je2 - je1 > 1);
122 G4double delab = elab[je2] - elab[je1];
123
124
125
128 G4int ke2 = NANGLE - 1;
129 G4double dsig = sig[je2][0] - sig[je1][0];
131 G4double b = sig[je1][0] - rc*elab[je1];
134
137 << ke1 << " " << ke2 << " "
138 << sigint1 <<
" " << sigint2 <<
G4endl;
139 }
140 do {
141 G4int midBin = (ke1 + ke2)/2;
142 dsig = sig[je2][midBin] - sig[je1][midBin];
143 rc = dsig/delab;
144 b = sig[je1][midBin] - rc*elab[je1];
146 if (sample < sigint) {
147 ke2 = midBin;
148 sigint2 = sigint;
149 }
150 else {
151 ke1 = midBin;
152 sigint1 = sigint;
153 }
155 G4cout << ke1 <<
" " << ke2 <<
" "
156 << sigint1 <<
" " << sigint2 <<
G4endl;
157 }
158 } while (ke2 - ke1 > 1);
159
160 dsig = sigint2 - sigint1;
161 rc = 1./dsig;
162 b = ke1 - rc*sigint1;
164 G4double theta = (0.5 + kint)*pi/180.;
165
167 G4cout <<
" energy bin " << je1 <<
" energy=" << elab[je1] <<
G4endl;
168 G4cout <<
" angle bin " << kint <<
" angle=" << theta/degree <<
G4endl;
169 }
170
171
172
174
180 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
181
182
183
187 G4double p = std::sqrt(px*px + py*py + pz*pz);
188
190 G4cout <<
" E1, M1 (GeV) " << E1/GeV <<
" " << M1/GeV <<
G4endl;
191 G4cout <<
" E2, M2 (GeV) " << E2/GeV <<
" " << M2/GeV <<
G4endl;
192 G4cout <<
" particle 1 momentum in CM " << px/GeV <<
" " << py/GeV <<
" "
193 << pz/GeV <<
" " << p/GeV <<
G4endl;
194 }
195
196
198 G4double pxnew = p*std::sin(theta)*std::cos(phi);
199 G4double pynew = p*std::sin(theta)*std::sin(phi);
201
202
203 if (px*px + py*py > 0) {
204 G4double cost, sint, ph, cosp, sinp;
205 cost = pz/p;
206 sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2;
207 py < 0 ? ph = 3*halfpi : ph = halfpi;
208 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
209 cosp = std::cos(ph);
210 sinp = std::sin(ph);
211 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
212 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
213 pz = (-sint*pxnew + cost*pznew);
214 }
215 else {
216 px = pxnew;
217 py = pynew;
218 pz = pznew;
219 }
220
223 G4cout <<
" particle 1 momentum in CM " << px/GeV <<
" " << py/GeV <<
" "
224 << pz/GeV <<
" " << p/GeV <<
G4endl;
225 }
226
227
228
234 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
235
237 G4cout <<
" betaCM " << betaCMx <<
" " << betaCMy <<
" "
238 << betaCMz <<
" " << betaCM <<
G4endl;
240 }
241
242
243
245 BETA[1] = -betaCMx;
246 BETA[2] = -betaCMy;
247 BETA[3] = -betaCMz;
248 BETA[4] = gammaCM;
249
250
251
252 PA[1] = px;
253 PA[2] = py;
254 PA[3] = pz;
255 PA[4] = std::sqrt(M1*M1 + p*p);
256
257 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
258 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
259
260 PB[1] = PA[1] + BPGAM * BETA[1];
261 PB[2] = PA[2] + BPGAM * BETA[2];
262 PB[3] = PA[3] + BPGAM * BETA[3];
263 PB[4] = (PA[4] - BETPA) * BETA[4];
264
268
269
270
271 PA[1] = -px;
272 PA[2] = -py;
273 PA[3] = -pz;
274 PA[4] = std::sqrt(M2*M2 + p*p);
275
276 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
277 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
278
279 PB[1] = PA[1] + BPGAM * BETA[1];
280 PB[2] = PA[2] + BPGAM * BETA[2];
281 PB[3] = PA[3] + BPGAM * BETA[3];
282 PB[4] = (PA[4] - BETPA) * BETA[4];
283
285
287 G4cout <<
" particle 1 momentum in LAB "
290 G4cout <<
" particle 2 momentum in LAB "
293 G4cout <<
" TOTAL momentum in LAB "
295 << " "
298 }
299
302 delete newP;
304
306}
double A(double temperature)
CLHEP::Hep3Vector G4ThreeVector
G4GLOB_DLL std::ostream G4cout
const G4ThreeVector & GetMomentumDirection() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetTotalEnergy() const
void SetMomentum(const G4ThreeVector &momentum)
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
G4double GetTotalMomentum() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4DynamicParticle * ReturnTargetParticle() const
G4double GetPDGMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
static G4Proton * Proton()