Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4Mag_UsualEqRhs.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// G4Mag_UsualEqRhs implementation
27//
28// Created: J.Apostolakis, CERN - 13.01.1997
29// --------------------------------------------------------------------
30
31#include "G4Mag_UsualEqRhs.hh"
32#include "G4MagneticField.hh"
33
34#include "globals.hh"
35
37 : G4Mag_EqRhs( MagField )
38{
39}
40
42{
43}
44
45void
47 const G4double B[3],
48 G4double dydx[] ) const
49{
50 G4double momentum_mag_square = y[3]*y[3] + y[4]*y[4] + y[5]*y[5];
51 G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square );
52
53 G4double cof = FCof()*inv_momentum_magnitude;
54
55 dydx[0] = y[3]*inv_momentum_magnitude; // (d/ds)x = Vx/V
56 dydx[1] = y[4]*inv_momentum_magnitude; // (d/ds)y = Vy/V
57 dydx[2] = y[5]*inv_momentum_magnitude; // (d/ds)z = Vz/V
58
59 dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ; // Ax = a*(Vy*Bz - Vz*By)
60 dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ; // Ay = a*(Vz*Bx - Vx*Bz)
61 dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ; // Az = a*(Vx*By - Vy*Bx)
62
63 return;
64}
65
66void
68 G4double MomentumXc,
69 G4double mass )
70
71{
72 G4Mag_EqRhs::SetChargeMomentumMass( particleCharge, MomentumXc, mass);
73}
double B(double temperature)
double G4double
Definition: G4Types.hh:83
G4double FCof() const
Definition: G4Mag_EqRhs.hh:62
virtual void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
Definition: G4Mag_EqRhs.cc:49
virtual void SetChargeMomentumMass(G4ChargeState particleCharge, G4double MomentumXc, G4double mass)
G4Mag_UsualEqRhs(G4MagneticField *MagField)
void EvaluateRhsGivenB(const G4double y[], const G4double B[3], G4double dydx[]) const
virtual ~G4Mag_UsualEqRhs()