Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4TransparentRegXTRadiator.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28
29#include <complex>
30
33#include "Randomize.hh"
34#include "G4Integrator.hh"
35#include "G4Gamma.hh"
36
37////////////////////////////////////////////////////////////////////////////
38//
39// Constructor, destructor
40
42 G4Material* foilMat,G4Material* gasMat,
43 G4double a, G4double b, G4int n,
44 const G4String& processName) :
45 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
46{
47 if(verboseLevel > 0)
48 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
49
50 // Build energy and angular integral spectra of X-ray TR photons from
51 // a radiator
52
53 fAlphaPlate = 10000;
54 fAlphaGas = 1000;
55
56 // BuildTable();
57}
58
59///////////////////////////////////////////////////////////////////////////
60
62{
63 ;
64}
65
66///////////////////////////////////////////////////////////////////////////
67//
68//
69
71{
72 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k /*, aMa, bMb ,sigma*/;
73 G4int k, kMax, kMin;
74
75 //aMa = fPlateThick*GetPlateLinearPhotoAbs(energy);
76 //bMb = fGasThick*GetGasLinearPhotoAbs(energy);
77 //sigma = aMa + bMb;
78
79 cofPHC = 4*pi*hbarc;
80 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
81 cof1 = fPlateThick*tmp;
82 cof2 = fGasThick*tmp;
83
84 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
85 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
86 cofMin /= cofPHC;
87
88 theta2 = cofPHC/(energy*(fPlateThick + fGasThick));
89
90 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
91 // else kMin = 1;
92
93
94 kMin = G4int(cofMin);
95 if (cofMin > kMin) kMin++;
96
97 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
98 // tmp /= cofPHC;
99 // kMax = G4int(tmp);
100 // if(kMax < 0) kMax = 0;
101 // kMax += kMin;
102
103
104 kMax = kMin + 49; // 19; // kMin + G4int(tmp);
105
106 // tmp /= fGamma;
107 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
108
109 if(verboseLevel > 2)
110 {
111 G4cout<<cof1<<" "<<cof2<<" "<<cofMin<<G4endl;
112 G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
113 }
114 for( k = kMin; k <= kMax; k++ )
115 {
116 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
117 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
118 // tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
119 if( k == kMin && kMin == G4int(cofMin) )
120 {
121 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
122 }
123 else
124 {
125 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
126 }
127 theta2k = std::sqrt(theta2*std::abs(k-cofMin));
128
129 if(verboseLevel > 2)
130 {
131 // G4cout<<"k = "<<k<<"; sqrt(theta2k) = "<<theta2k<<"; tmp = "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
132 // <<"; sum = "<<sum<<G4endl;
133 G4cout<<k<<" "<<theta2k<<" "<<std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result
134 <<" "<<sum<<G4endl;
135 }
136 }
137 result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
138 // result *= ( 1 - std::exp(-0.5*fPlateNumber*sigma) )/( 1 - std::exp(-0.5*sigma) );
139 // fPlateNumber;
140 result *= fPlateNumber; // *std::exp(-0.5*fPlateNumber*sigma);
141 // +1-std::exp(-0.5*fPlateNumber*sigma);
142 /*
143 fEnergy = energy;
144 // G4Integrator<G4VXTRenergyLoss,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
145 G4Integrator<G4TransparentRegXTRadiator,G4double(G4VXTRenergyLoss::*)(G4double)> integral;
146
147 tmp = integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
148 0.0,0.3*fMaxThetaTR) +
149 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
150 0.3*fMaxThetaTR,0.6*fMaxThetaTR) +
151 integral.Legendre96(this,&G4VXTRenergyLoss::SpectralAngleXTRdEdx,
152 0.6*fMaxThetaTR,fMaxThetaTR) ;
153 result += tmp;
154 */
155 return result;
156}
157
158
159///////////////////////////////////////////////////////////////////////////
160//
161// Approximation for radiator interference factor for the case of
162// fully Regular radiator. The plate and gas gap thicknesses are fixed .
163// The mean values of the plate and gas gap thicknesses
164// are supposed to be about XTR formation zones but much less than
165// mean absorption length of XTR photons in coresponding material.
166
169 G4double gamma, G4double varAngle )
170{
171 /*
172 G4double result, Za, Zb, Ma, Mb, sigma;
173
174 Za = GetPlateFormationZone(energy,gamma,varAngle);
175 Zb = GetGasFormationZone(energy,gamma,varAngle);
176 Ma = GetPlateLinearPhotoAbs(energy);
177 Mb = GetGasLinearPhotoAbs(energy);
178 sigma = Ma*fPlateThick + Mb*fGasThick;
179
180 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
181 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
182
183 G4complex Ha = std::pow(Ca,-fAlphaPlate);
184 G4complex Hb = std::pow(Cb,-fAlphaGas);
185 G4complex H = Ha*Hb;
186 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
187 * G4double(fPlateNumber) ;
188 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
189 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
190 // *(1.0 - std::pow(H,fPlateNumber)) ;
191 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
192 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
193 result = 2.0*std::real(R);
194 return result;
195 */
196 // numerically unstable result
197
198 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
199
200 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
201 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
203 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
204 sigma = aMa*fPlateThick + bMb*fGasThick;
205 Qa = std::exp(-0.5*aMa);
206 Qb = std::exp(-0.5*bMb);
207 Q = Qa*Qb;
208
209 G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
210 G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
211 G4complex H = Ha*Hb;
212 G4complex Hs = conj(H);
213 D = 1.0 /( (1 - Q)*(1 - Q) +
214 4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
215 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
217 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
218 // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
219 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
220 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
221 result = 2.0*std::real(R);
222 return result;
223
224}
225
226
227//
228//
229////////////////////////////////////////////////////////////////////////////
230
231
232
233
234
235
236
237
double D(double temp)
double G4double
Definition: G4Types.hh:83
std::complex< G4double > G4complex
Definition: G4Types.hh:88
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
G4double SpectralXTRdEdx(G4double energy) override
G4TransparentRegXTRadiator(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="TransparentRegXTRadiator")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle) override
G4int verboseLevel
Definition: G4VProcess.hh:356
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)