73 G4int IterationsLimit = 100000;
84 if (theMeanMult <= MaxAverageMultiplicity) {
87 theChannel = theMicrocanonicalEnsemble->
ChooseAandZ(theFragment);
88 _theEnsemble = theMicrocanonicalEnsemble;
96 _theEnsemble = theMacrocanonicalEnsemble;
102 theChannel = theMacrocanonicalEnsemble->
ChooseAandZ(theFragment);
106 if (!ChannelOk)
delete theChannel;
109 }
while (!ChannelOk);
114 theResult->push_back(
new G4Fragment(theFragment));
115 delete theMicrocanonicalEnsemble;
116 if (theMacrocanonicalEnsemble != 0)
delete theMacrocanonicalEnsemble;
128 if (FindTemperatureOfBreakingChannel(theFragment,theChannel,Temperature))
break;
139 }
while (Iterations++ < IterationsLimit );
144 if (Iterations >= IterationsLimit)
145 throw G4HadronicException(__FILE__, __LINE__,
"G4StatMF::BreakItUp: Was not possible to solve for temperature of breaking channel");
161 G4FragmentVector::iterator j;
162 for (j = theResult->begin(); j != theResult->end(); j++)
163 FragmentsEnergy += (*j)->GetMomentum().
e();
164 SavedScaleFactor = ScaleFactor;
165 ScaleFactor = InitialMomentum.
e()/FragmentsEnergy;
167 for (j = theResult->begin(); j != theResult->end(); j++) {
168 ScaledMomentum = ScaleFactor * (*j)->GetMomentum().vect();
169 G4double Mass = (*j)->GetMomentum().m();
171 NewMomentum.
setVect(ScaledMomentum);
172 NewMomentum.
setE(std::sqrt(ScaledMomentum.
mag2()+Mass*Mass));
173 (*j)->SetMomentum(NewMomentum);
176 }
while (ScaleFactor > 1.0+1.e-5 && std::abs(ScaleFactor-SavedScaleFactor)/ScaleFactor > 1.e-10);
180 G4FragmentVector::iterator i;
181 for (i = theResult->begin(); i != theResult->end(); i++) {
184 (*i)->SetMomentum(FourMom);
188 delete theMicrocanonicalEnsemble;
189 if (theMacrocanonicalEnsemble != 0)
delete theMacrocanonicalEnsemble;
196G4bool G4StatMF::FindTemperatureOfBreakingChannel(
const G4Fragment & theFragment,
205 G4double T = std::max(Temperature,0.0012*MeV);
207 G4double TotalEnergy = CalcEnergy(A,Z,aChannel,T);
216 }
else if (Da < 0.0) {
219 if (T < 0.001*MeV)
return false;
221 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
223 Db = (U - TotalEnergy)/U;
231 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
233 Db = (U - TotalEnergy)/U;
238 G4double eps = 1.0e-14 * std::abs(T-Ta);
242 for (
G4int j = 0; j < 1000; j++) {
244 if (std::abs(Ta-Tc) <= eps) {
251 TotalEnergy = CalcEnergy(A,Z,aChannel,T);
269 Temperature = (Ta+T)*0.5;
double A(double temperature)
std::vector< G4Fragment * > G4FragmentVector
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
void setVect(const Hep3Vector &)
G4double GetExcitationEnergy() const
const G4LorentzVector & GetMomentum() const
static G4double GetMassExcess(const G4int A, const G4int Z)
G4bool CheckFragments(void)
G4double GetFragmentsEnergy(G4double T) const
size_t GetMultiplicity(void)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
static G4double GetMaxAverageMultiplicity(G4int A)
static G4double GetCoulomb()
G4FragmentVector * BreakItUp(const G4Fragment &theNucleus)
G4double GetMeanTemperature(void) const
G4double GetMeanMultiplicity(void) const