Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolarizedPairProductionCrossSection.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4PolarizedPairProductionCrossSection
33//
34// Author: Andreas Schaelicke on the base of Karim Laihems code
35//
36// Creation date: 16.08.2006
37//
38
41
42G4bool G4PolarizedPairProductionCrossSection::scrnInitialized=false;
43G4double G4PolarizedPairProductionCrossSection::SCRN [3][20];
44// screening function lookup table;
45
46void G4PolarizedPairProductionCrossSection::InitializeMe()
47{
48 if (!scrnInitialized) {
49 SCRN [1][1]= 0.5 ; SCRN [2][1] = 0.0145;
50 SCRN [1][2]= 1.0 ; SCRN [2][2] = 0.0490;
51 SCRN [1][3]= 2.0 ; SCRN [2][3] = 0.1400;
52 SCRN [1][4]= 4.0 ; SCRN [2][4] = 0.3312;
53 SCRN [1][5]= 8.0 ; SCRN [2][5] = 0.6758;
54 SCRN [1][6]= 15.0 ; SCRN [2][6] = 1.126;
55 SCRN [1][7]= 20.0 ; SCRN [2][7] = 1.367;
56 SCRN [1][8]= 25.0 ; SCRN [2][8] = 1.564;
57 SCRN [1][9]= 30.0 ; SCRN [2][9] = 1.731;
58 SCRN [1][10]= 35.0 ; SCRN [2][10]= 1.875;
59 SCRN [1][11]= 40.0 ; SCRN [2][11]= 2.001;
60 SCRN [1][12]= 45.0 ; SCRN [2][12]= 2.114;
61 SCRN [1][13]= 50.0 ; SCRN [2][13]= 2.216;
62 SCRN [1][14]= 60.0 ; SCRN [2][14]= 2.393;
63 SCRN [1][15]= 70.0 ; SCRN [2][15]= 2.545;
64 SCRN [1][16]= 80.0 ; SCRN [2][16]= 2.676;
65 SCRN [1][17]= 90.0 ; SCRN [2][17]= 2.793;
66 SCRN [1][18]= 100.0 ; SCRN [2][18]= 2.897;
67 SCRN [1][19]= 120.0 ; SCRN [2][19]= 3.078;
68
69 scrnInitialized=true;
70 }
71}
72
74{
75 InitializeMe();
76}
77
78
80 G4double aLept0E,
81 G4double sintheta,
82 const G4StokesVector & beamPol,
83 const G4StokesVector & /*p1*/,
84 G4int /*flag*/)
85{
86 G4double aLept1E = aGammaE - aLept0E;
87
88 G4double Stokes_P3 = beamPol.z() ;
89 // **************************************************************************
90
91 G4double m0_c2 = electron_mass_c2;
92 G4double Lept0E = aLept0E/m0_c2+1., Lept0E2 = Lept0E * Lept0E ;
93 G4double GammaE = aGammaE/m0_c2;
94 G4double Lept1E = aLept1E/m0_c2-1., Lept1E2 = Lept1E * Lept1E ;
95
96
97 // const G4Element* theSelectedElement = theModel->SelectedAtom();
98
99 // ******* Gamma Transvers Momentum
100
101 G4double TMom = std::sqrt(Lept0E2 -1.)* sintheta, u = TMom , u2 =u * u ;
102 G4double Xsi = 1./(1.+u2) , Xsi2 = Xsi * Xsi ;
103
104 // G4double theZ = theSelectedElement->GetZ();
105
106 // G4double fCoul = theSelectedElement->GetfCoulomb();
107 G4double delta = 12. * std::pow(theZ, 1./3.) * Lept0E * Lept1E * Xsi / (121. * GammaE);
108 G4double GG=0.;
109
110 if(delta < 0.5) {
111 GG = std::log(2.* Lept0E * Lept1E / GammaE) - 2. - fCoul;
112 }
113 else if ( delta < 120.) {
114 for (G4int j=2; j<=19; j++) {
115 if(SCRN[1][j] >= delta) {
116 GG =std::log(2. * Lept0E * Lept1E / GammaE) - 2. - fCoul
117 -(SCRN[2][j-1]+(delta-SCRN[1][j-1])*(SCRN[2][j]-SCRN[2][j-1])/(SCRN[1][j]-SCRN[1][j-1]));
118 break;
119 }
120 }
121 }
122 else {
123 G4double alpha_sc = (111. * std::pow(theZ, -1./3.)) / Xsi;
124 GG = std::log(alpha_sc)- 2. - fCoul;
125 }
126
127 if(GG<-1.) GG=-1.; // *KL* do we need this ?!
128
129
130 G4double I_Lepton = (Lept0E2 + Lept1E2)*(3+2*GG) + 2. * Lept0E * Lept1E * (1. + 4. * u2 * Xsi2 * GG);
131
132 // G4double D_Lepton1 = -8 * Lept0E * Lept1E * u2 * Xsi2 * GG / I_Lepton;
133
134 G4double L_Lepton1 = GammaE * ((Lept0E - Lept1E) * (3. + 2. * GG)+2 * Lept1E * (1. + 4. * u2 * Xsi2 * GG))/I_Lepton;
135
136 G4double T_Lepton1 = 4. * GammaE * Lept1E * Xsi * u * (1. - 2. * Xsi) * GG / I_Lepton ;
137
138
139 G4double Stokes_S1 = (Stokes_P3 * T_Lepton1) ;
140 G4double Stokes_S2 = 0.;
141 G4double Stokes_S3 = (Stokes_P3 * L_Lepton1) ;
142
143
144 theFinalElectronPolarization.setX(Stokes_S1);
145 theFinalElectronPolarization.setY(Stokes_S2);
146 theFinalElectronPolarization.setZ(Stokes_S3);
147
148 if(theFinalElectronPolarization.mag2()>1.) {
149 G4cout<<" WARNING in pol-conv theFinalElectronPolarization \n";
150 G4cout
151 <<"\t"<<theFinalElectronPolarization
152 <<"\t GG\t"<<GG
153 <<"\t delta\t"<<delta
154 <<G4endl;
155 theFinalElectronPolarization.setX(0.);
156 theFinalElectronPolarization.setY(0.);
157 theFinalElectronPolarization.setZ(Stokes_S3);
158 if(Stokes_S3>1.) theFinalElectronPolarization.setZ(1.);
159 }
160
161
162 G4double L_Lepton2 = GammaE * ((Lept1E - Lept0E) * (3. + 2. * GG)+2 * Lept0E * (1. + 4. * u2 * Xsi2 * GG))/I_Lepton;
163
164 G4double T_Lepton2 = 4. * GammaE * Lept0E * Xsi * u * (1. - 2. * Xsi) * GG / I_Lepton ;
165
166 G4double Stokes_SS1 = (Stokes_P3 * T_Lepton2) ;
167 G4double Stokes_SS2 = 0.;
168 G4double Stokes_SS3 = (Stokes_P3 * L_Lepton2) ;
169
170 theFinalPositronPolarization.SetPhoton();
171
172 theFinalPositronPolarization.setX(Stokes_SS1);
173 theFinalPositronPolarization.setY(Stokes_SS2);
174 theFinalPositronPolarization.setZ(Stokes_SS3);
175
176 if(theFinalPositronPolarization.mag2()>1.) {
177 G4cout<<" WARNING in pol-conv theFinalPositronPolarization \n";
178 G4cout
179 <<"\t"<<theFinalPositronPolarization
180 <<"\t GG\t"<<GG
181 <<"\t delta\t"<<delta
182 <<G4endl;
183 }
184}
185
187 const G4StokesVector & /*pol3*/)
188{
189 G4cout<<"ERROR dummy routine G4PolarizedPairProductionCrossSection::XSection called \n";
190 return 0.;
191}
192
193 // return expected mean polarisation
195{
196 // electron/positron
197 return theFinalElectronPolarization;
198}
200{
201 // photon
202 return theFinalPositronPolarization;;
203}
204
205
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
void setY(double)
double mag2() const
void setZ(double)
void setX(double)
virtual G4double XSection(const G4StokesVector &pol2, const G4StokesVector &pol3) override
virtual void Initialize(G4double eps, G4double X, G4double phi, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0) override