Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4IonDEDXHandler Class Reference

#include <G4IonDEDXHandler.hh>

Public Member Functions

 G4IonDEDXHandler (G4VIonDEDXTable *tables, G4VIonDEDXScalingAlgorithm *algorithm, const G4String &name, G4int maxCacheSize=5, G4bool splines=true)
 
 ~G4IonDEDXHandler ()
 
G4bool IsApplicable (const G4ParticleDefinition *, const G4Material *)
 
G4double GetDEDX (const G4ParticleDefinition *, const G4Material *, G4double)
 
G4bool BuildDEDXTable (const G4ParticleDefinition *, const G4Material *)
 
G4bool BuildDEDXTable (G4int atomicNumberIon, const G4Material *)
 
void PrintDEDXTable (const G4ParticleDefinition *, const G4Material *, G4double, G4double, G4int, G4bool logScaleEnergy=true)
 
G4double GetLowerEnergyEdge (const G4ParticleDefinition *, const G4Material *)
 
G4double GetUpperEnergyEdge (const G4ParticleDefinition *, const G4Material *)
 
void ClearCache ()
 
G4String GetName ()
 

Detailed Description

Definition at line 82 of file G4IonDEDXHandler.hh.

Constructor & Destructor Documentation

◆ G4IonDEDXHandler()

G4IonDEDXHandler::G4IonDEDXHandler ( G4VIonDEDXTable tables,
G4VIonDEDXScalingAlgorithm algorithm,
const G4String name,
G4int  maxCacheSize = 5,
G4bool  splines = true 
)

Definition at line 68 of file G4IonDEDXHandler.cc.

73 :
74 table(ionTable),
75 algorithm(ionAlgorithm),
76 tableName(name),
77 useSplines(splines),
78 maxCacheEntries(maxCacheSize) {
79
80 if(table == 0) {
81 G4cerr << "G4IonDEDXHandler::G4IonDEDXHandler() "
82 << " Pointer to G4VIonDEDXTable object is null-pointer."
83 << G4endl;
84 }
85
86 if(algorithm == 0) {
87 G4cerr << "G4IonDEDXHandler::G4IonDEDXHandler() "
88 << " Pointer to G4VIonDEDXScalingAlgorithm object is null-pointer."
89 << G4endl;
90 }
91
92 if(maxCacheEntries <= 0) {
93 G4cerr << "G4IonDEDXHandler::G4IonDEDXHandler() "
94 << " Cache size <=0. Resetting to 5."
95 << G4endl;
96 maxCacheEntries = 5;
97 }
98}
G4GLOB_DLL std::ostream G4cerr
#define G4endl
Definition: G4ios.hh:57

◆ ~G4IonDEDXHandler()

G4IonDEDXHandler::~G4IonDEDXHandler ( )

Definition at line 102 of file G4IonDEDXHandler.cc.

102 {
103
104 ClearCache();
105
106 // All stopping power vectors built according to Bragg's addivitiy rule
107 // are deleted. All other stopping power vectors are expected to be
108 // deleted by their creator class (sub-class of G4VIonDEDXTable).
109 // DEDXTableBraggRule::iterator iter = stoppingPowerTableBragg.begin();
110 // DEDXTableBraggRule::iterator iter_end = stoppingPowerTableBragg.end();
111
112 // for(;iter != iter_end; iter++) delete iter -> second;
113 stoppingPowerTableBragg.clear();
114
115 stoppingPowerTable.clear();
116
117 if(table != 0) delete table;
118 if(algorithm != 0) delete algorithm;
119}

Member Function Documentation

◆ BuildDEDXTable() [1/2]

G4bool G4IonDEDXHandler::BuildDEDXTable ( const G4ParticleDefinition particle,
const G4Material material 
)

Definition at line 196 of file G4IonDEDXHandler.cc.

198 { // Target material
199
200 G4int atomicNumberIon = particle -> GetAtomicNumber();
201
202 G4bool isApplicable = BuildDEDXTable(atomicNumberIon, material);
203
204 return isApplicable;
205}
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
G4bool BuildDEDXTable(const G4ParticleDefinition *, const G4Material *)

Referenced by BuildDEDXTable().

◆ BuildDEDXTable() [2/2]

G4bool G4IonDEDXHandler::BuildDEDXTable ( G4int  atomicNumberIon,
const G4Material material 
)

Definition at line 210 of file G4IonDEDXHandler.cc.

212 { // Target material
213
214 G4bool isApplicable = true;
215
216 if(table == 0 || algorithm == 0) {
217 isApplicable = false;
218 return isApplicable;
219 }
220
221 G4int atomicNumberBase =
222 algorithm -> AtomicNumberBaseIon(atomicNumberIon, material);
223
224 // Checking if vector is already built, and returns if this is indeed
225 // the case
226 G4IonKey key = std::make_pair(atomicNumberBase, material);
227
228 DEDXTable::iterator iter = stoppingPowerTable.find(key);
229 if(iter != stoppingPowerTable.end()) return isApplicable;
230
231 // Checking if table contains stopping power vector for given material name
232 // or chemical formula
233 const G4String& chemFormula = material -> GetChemicalFormula();
234 const G4String& materialName = material -> GetName();
235
236 isApplicable = table -> BuildPhysicsVector(atomicNumberBase, chemFormula);
237
238 if(isApplicable) {
239 stoppingPowerTable[key] =
240 table -> GetPhysicsVector(atomicNumberBase, chemFormula);
241 return isApplicable;
242 }
243
244 isApplicable = table -> BuildPhysicsVector(atomicNumberBase, materialName);
245 if(isApplicable) {
246 stoppingPowerTable[key] =
247 table -> GetPhysicsVector(atomicNumberBase, materialName);
248 return isApplicable;
249 }
250
251 // Building the stopping power vector based on Bragg's additivity rule
252 const G4ElementVector* elementVector = material -> GetElementVector() ;
253
254 std::vector<G4PhysicsVector*> dEdxTable;
255
256 size_t nmbElements = material -> GetNumberOfElements();
257
258 for(size_t i = 0; i < nmbElements; i++) {
259
260 G4int atomicNumberMat = G4int((*elementVector)[i] -> GetZ());
261
262 isApplicable = table -> BuildPhysicsVector(atomicNumberBase, atomicNumberMat);
263
264 if(isApplicable) {
265
266 G4PhysicsVector* dEdx =
267 table -> GetPhysicsVector(atomicNumberBase, atomicNumberMat);
268 dEdxTable.push_back(dEdx);
269 }
270 else {
271
272 dEdxTable.clear();
273 break;
274 }
275 }
276
277 if(isApplicable) {
278
279 if(dEdxTable.size() > 0) {
280
281 size_t nmbdEdxBins = dEdxTable[0] -> GetVectorLength();
282 G4double lowerEdge = dEdxTable[0] -> GetLowEdgeEnergy(0);
283 G4double upperEdge = dEdxTable[0] -> GetLowEdgeEnergy(nmbdEdxBins-1);
284
285 G4LPhysicsFreeVector* dEdxBragg =
286 new G4LPhysicsFreeVector(nmbdEdxBins,
287 lowerEdge,
288 upperEdge);
289
290 const G4double* massFractionVector = material -> GetFractionVector();
291
292 G4bool b;
293 for(size_t j = 0; j < nmbdEdxBins; j++) {
294
295 G4double edge = dEdxTable[0] -> GetLowEdgeEnergy(j);
296
297 G4double value = 0.0;
298 for(size_t i = 0; i < nmbElements; i++) {
299
300 value += (dEdxTable[i] -> GetValue(edge ,b)) *
301 massFractionVector[i];
302 }
303
304 dEdxBragg -> PutValues(j, edge, value);
305 }
306 dEdxBragg -> SetSpline(useSplines);
307
308#ifdef PRINT_DEBUG
309 G4cout << "G4IonDEDXHandler::BuildPhysicsVector() for ion with Z="
310 << atomicNumberBase << " in "
311 << material -> GetName()
312 << G4endl;
313
314 G4cout << *dEdxBragg;
315#endif
316
317 stoppingPowerTable[key] = dEdxBragg;
318 stoppingPowerTableBragg[key] = dEdxBragg;
319 }
320 }
321
322 ClearCache();
323
324 return isApplicable;
325}
std::vector< G4Element * > G4ElementVector
double G4double
Definition: G4Types.hh:83
G4GLOB_DLL std::ostream G4cout

◆ ClearCache()

void G4IonDEDXHandler::ClearCache ( )

Definition at line 425 of file G4IonDEDXHandler.cc.

425 {
426
427 CacheIterPointerMap::iterator iter = cacheKeyPointers.begin();
428 CacheIterPointerMap::iterator iter_end = cacheKeyPointers.end();
429
430 for(;iter != iter_end; iter++) {
431 void* pointerIter = iter -> second;
432 CacheEntryList::iterator* listPointerIter =
433 (CacheEntryList::iterator*) pointerIter;
434
435 delete listPointerIter;
436 }
437
438 cacheEntries.clear();
439 cacheKeyPointers.clear();
440}

Referenced by BuildDEDXTable(), and ~G4IonDEDXHandler().

◆ GetDEDX()

G4double G4IonDEDXHandler::GetDEDX ( const G4ParticleDefinition particle,
const G4Material material,
G4double  kineticEnergy 
)

Definition at line 149 of file G4IonDEDXHandler.cc.

152 { // Kinetic energy of projectile
153
154 G4double dedx = 0.0;
155
156 G4CacheValue value = GetCacheValue(particle, material);
157
158 if(kineticEnergy <= 0.0) dedx = 0.0;
159 else if(value.dedxVector != 0) {
160
161 G4bool b;
162 G4double factor = value.density;
163
164 factor *= algorithm -> ScalingFactorDEDX(particle,
165 material,
166 kineticEnergy);
167 G4double scaledKineticEnergy = kineticEnergy * value.energyScaling;
168
169 if(scaledKineticEnergy < value.lowerEnergyEdge) {
170
171 factor *= std::sqrt(scaledKineticEnergy / value.lowerEnergyEdge);
172 scaledKineticEnergy = value.lowerEnergyEdge;
173 }
174
175 dedx = factor * value.dedxVector -> GetValue(scaledKineticEnergy, b);
176
177 if(dedx < 0.0) dedx = 0.0;
178 }
179 else dedx = 0.0;
180
181#ifdef PRINT_DEBUG
182 G4cout << "G4IonDEDXHandler::GetDEDX() E = "
183 << kineticEnergy / MeV << " MeV * "
184 << value.energyScaling << " = "
185 << kineticEnergy * value.energyScaling / MeV
186 << " MeV, dE/dx = " << dedx / MeV * cm << " MeV/cm"
187 << ", material = " << material -> GetName()
188 << G4endl;
189#endif
190
191 return dedx;
192}
G4double lowerEnergyEdge
G4double density
G4PhysicsVector * dedxVector
G4double energyScaling

Referenced by PrintDEDXTable().

◆ GetLowerEnergyEdge()

G4double G4IonDEDXHandler::GetLowerEnergyEdge ( const G4ParticleDefinition particle,
const G4Material material 
)

Definition at line 517 of file G4IonDEDXHandler.cc.

519 { // Target material
520
521 G4double edge = 0.0;
522
523 G4CacheValue value = GetCacheValue(particle, material);
524
525 if(value.energyScaling > 0)
526 edge = value.lowerEnergyEdge / value.energyScaling;
527
528 return edge;
529}

Referenced by PrintDEDXTable().

◆ GetName()

G4String G4IonDEDXHandler::GetName ( )

Definition at line 549 of file G4IonDEDXHandler.cc.

549 {
550
551 return tableName;
552}

Referenced by BuildDEDXTable(), GetDEDX(), and PrintDEDXTable().

◆ GetUpperEnergyEdge()

G4double G4IonDEDXHandler::GetUpperEnergyEdge ( const G4ParticleDefinition particle,
const G4Material material 
)

Definition at line 533 of file G4IonDEDXHandler.cc.

535 { // Target material
536
537 G4double edge = 0.0;
538
539 G4CacheValue value = GetCacheValue(particle, material);
540
541 if(value.energyScaling > 0)
542 edge = value.upperEnergyEdge / value.energyScaling;
543
544 return edge;
545}
G4double upperEnergyEdge

Referenced by PrintDEDXTable().

◆ IsApplicable()

G4bool G4IonDEDXHandler::IsApplicable ( const G4ParticleDefinition particle,
const G4Material material 
)

Definition at line 123 of file G4IonDEDXHandler.cc.

125 { // Target material
126
127 G4bool isApplicable = true;
128
129 if(table == 0 || algorithm == 0) {
130 isApplicable = false;
131 }
132 else {
133
134 G4int atomicNumberIon = particle -> GetAtomicNumber();
135 G4int atomicNumberBase =
136 algorithm -> AtomicNumberBaseIon(atomicNumberIon, material);
137
138 G4IonKey key = std::make_pair(atomicNumberBase, material);
139
140 DEDXTable::iterator iter = stoppingPowerTable.find(key);
141 if(iter == stoppingPowerTable.end()) isApplicable = false;
142 }
143
144 return isApplicable;
145}

◆ PrintDEDXTable()

void G4IonDEDXHandler::PrintDEDXTable ( const G4ParticleDefinition particle,
const G4Material material,
G4double  lowerBoundary,
G4double  upperBoundary,
G4int  nmbBins,
G4bool  logScaleEnergy = true 
)

Definition at line 444 of file G4IonDEDXHandler.cc.

450 { // Logarithmic scaling of energy
451
452 G4double atomicMassNumber = particle -> GetAtomicMass();
453 G4double materialDensity = material -> GetDensity();
454
455 G4cout << "# dE/dx table for " << particle -> GetParticleName()
456 << " in material " << material -> GetName()
457 << " of density " << materialDensity / g * cm3
458 << " g/cm3"
459 << G4endl
460 << "# Projectile mass number A1 = " << atomicMassNumber
461 << G4endl
462 << "# Energy range (per nucleon) of tabulation: "
463 << GetLowerEnergyEdge(particle, material) / atomicMassNumber / MeV
464 << " - "
465 << GetUpperEnergyEdge(particle, material) / atomicMassNumber / MeV
466 << " MeV"
467 << G4endl
468 << "# ------------------------------------------------------"
469 << G4endl;
470 G4cout << "#"
471 << std::setw(13) << std::right << "E"
472 << std::setw(14) << "E/A1"
473 << std::setw(14) << "dE/dx"
474 << std::setw(14) << "1/rho*dE/dx"
475 << G4endl;
476 G4cout << "#"
477 << std::setw(13) << std::right << "(MeV)"
478 << std::setw(14) << "(MeV)"
479 << std::setw(14) << "(MeV/cm)"
480 << std::setw(14) << "(MeV*cm2/mg)"
481 << G4endl
482 << "# ------------------------------------------------------"
483 << G4endl;
484
485 //G4CacheValue value = GetCacheValue(particle, material);
486
487 G4double energyLowerBoundary = lowerBoundary * atomicMassNumber;
488 G4double energyUpperBoundary = upperBoundary * atomicMassNumber;
489
490 if(logScaleEnergy) {
491
492 energyLowerBoundary = std::log(energyLowerBoundary);
493 energyUpperBoundary = std::log(energyUpperBoundary);
494 }
495
496 G4double deltaEnergy = (energyUpperBoundary - energyLowerBoundary) /
497 G4double(nmbBins);
498
499 G4cout.precision(6);
500 for(int i = 0; i < nmbBins + 1; i++) {
501
502 G4double energy = energyLowerBoundary + i * deltaEnergy;
503 if(logScaleEnergy) energy = G4Exp(energy);
504
505 G4double loss = GetDEDX(particle, material, energy);
506
507 G4cout << std::setw(14) << std::right << energy / MeV
508 << std::setw(14) << energy / atomicMassNumber / MeV
509 << std::setw(14) << loss / MeV * cm
510 << std::setw(14) << loss / materialDensity / (MeV*cm2/(0.001*g))
511 << G4endl;
512 }
513}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double GetLowerEnergyEdge(const G4ParticleDefinition *, const G4Material *)
G4double GetUpperEnergyEdge(const G4ParticleDefinition *, const G4Material *)
G4double GetDEDX(const G4ParticleDefinition *, const G4Material *, G4double)
G4double energy(const ThreeVector &p, const G4double m)

The documentation for this class was generated from the following files: