Geant4 10.7.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4ionEffectiveCharge Class Reference

#include <G4ionEffectiveCharge.hh>

Public Member Functions

 G4ionEffectiveCharge ()
 
virtual ~G4ionEffectiveCharge ()
 
G4double EffectiveChargeSquareRatio (const G4ParticleDefinition *p, const G4Material *material, G4double kineticEnergy)
 
G4double EffectiveCharge (const G4ParticleDefinition *p, const G4Material *material, G4double kineticEnergy)
 

Detailed Description

Definition at line 61 of file G4ionEffectiveCharge.hh.

Constructor & Destructor Documentation

◆ G4ionEffectiveCharge()

G4ionEffectiveCharge::G4ionEffectiveCharge ( )
explicit

Definition at line 64 of file G4ionEffectiveCharge.cc.

65{
66 chargeCorrection = 1.0;
67 energyHighLimit = 20.0*MeV;
68 energyLowLimit = 1.0*keV;
69 energyBohr = 25.*keV;
70 massFactor = amu_c2/(proton_mass_c2*keV);
71 minCharge = 1.0;
72 lastPart = 0;
73 lastMat = 0;
74 lastKinEnergy = 0.0;
75 effCharge = eplus;
76 inveplus = 1.0/CLHEP::eplus;
77 g4calc = G4Pow::GetInstance();
78}
static G4Pow * GetInstance()
Definition: G4Pow.cc:41

◆ ~G4ionEffectiveCharge()

G4ionEffectiveCharge::~G4ionEffectiveCharge ( )
virtual

Definition at line 82 of file G4ionEffectiveCharge.cc.

83{}

Member Function Documentation

◆ EffectiveCharge()

G4double G4ionEffectiveCharge::EffectiveCharge ( const G4ParticleDefinition p,
const G4Material material,
G4double  kineticEnergy 
)

Definition at line 87 of file G4ionEffectiveCharge.cc.

90{
91 if(p == lastPart && material == lastMat && kineticEnergy == lastKinEnergy)
92 return effCharge;
93
94 lastPart = p;
95 lastMat = material;
96 lastKinEnergy = kineticEnergy;
97
98 G4double mass = p->GetPDGMass();
99 G4double charge = p->GetPDGCharge();
100 G4double Zi = charge*inveplus;
101
102 chargeCorrection = 1.0;
103 effCharge = charge;
104
105 // The aproximation of ion effective charge from:
106 // J.F.Ziegler, J.P. Biersack, U. Littmark
107 // The Stopping and Range of Ions in Matter,
108 // Vol.1, Pergamon Press, 1985
109 // Fast ions or hadrons
110 G4double reducedEnergy = kineticEnergy * proton_mass_c2/mass ;
111
112 //G4cout << "e= " << reducedEnergy << " Zi= " << Zi << " "
113 //<< material->GetName() << G4endl;
114
115 if(Zi < 1.5 || !material || reducedEnergy > Zi*energyHighLimit ) {
116 return charge;
117 }
118 G4double z = material->GetIonisation()->GetZeffective();
119 reducedEnergy = std::max(reducedEnergy,energyLowLimit);
120
121 // Helium ion case
122 if( Zi < 2.5 ) {
123
124 static const G4double c[6] =
125 {0.2865,0.1266,-0.001429,0.02402,-0.01135,0.001475};
126
127 G4double Q = std::max(0.0,G4Log(reducedEnergy*massFactor));
128 G4double x = c[0];
129 G4double y = 1.0;
130 for (G4int i=1; i<6; ++i) {
131 y *= Q;
132 x += y * c[i] ;
133 }
134 G4double ex;
135 if(x < 0.2) { ex = x * (1 - 0.5*x); }
136 else { ex = 1. - G4Exp(-x); }
137
138 G4double tq = 7.6 - Q;
139 G4double tq2= tq*tq;
140 G4double tt = ( 0.007 + 0.00005 * z );
141 if(tq2 < 0.2) { tt *= (1.0 - tq2 + 0.5*tq2*tq2); }
142 else { tt *= G4Exp(-tq2); }
143
144 effCharge = charge*(1.0 + tt) * std::sqrt(ex);
145
146 // Heavy ion case
147 } else {
148
149 G4double y;
150 G4double zi13 = g4calc->A13(Zi);
151 G4double zi23 = zi13*zi13;
152
153 // v1 is ion velocity in vF unit
154 G4double eF = material->GetIonisation()->GetFermiEnergy();
155 G4double v1sq = reducedEnergy/eF;
156 G4double vFsq = eF/energyBohr;
157 G4double vF = std::sqrt(eF/energyBohr);
158
159 // Faster than Fermi velocity
160 if ( v1sq > 1.0 ) {
161 y = vF * std::sqrt(v1sq) * ( 1.0 + 0.2/v1sq ) / zi23 ;
162
163 // Slower than Fermi velocity
164 } else {
165 y = 0.692308 * vF * (1.0 + 0.666666*v1sq + v1sq*v1sq/15.0) / zi23 ;
166 }
167
168 G4double q;
169 G4double y3 = std::pow(y, 0.3) ;
170 // G4cout<<"y= "<<y<<" y3= "<<y3<<" v1= "<<v1<<" vF= "<<vF<<G4endl;
171 q = 1.0 - G4Exp( 0.803*y3 - 1.3167*y3*y3 - 0.38157*y - 0.008983*y*y);
172 q = std::max(q, minCharge/Zi);
173
174 effCharge = q*charge;
175
176 G4double tq = 7.6 - G4Log(reducedEnergy/keV);
177 G4double tq2= tq*tq;
178 G4double sq = 1.0 + ( 0.18 + 0.0015 * z )*G4Exp(-tq2)/ (Zi*Zi);
179
180 // G4cout << "sq= " << sq << G4endl;
181
182 // Screen length according to
183 // J.F.Ziegler and J.M.Manoyan, The stopping of ions in compaunds,
184 // Nucl. Inst. & Meth. in Phys. Res. B35 (1988) 215-228.
185
186 G4double lambda = 10.0 * vF *g4calc->A23(1.0 - q)/ (zi13 * (6.0 + q));
187
188 G4double lambda2 = lambda*lambda;
189
190 G4double xx = (0.5/q - 0.5)*G4Log(1.0 + lambda2)/vFsq;
191
192 chargeCorrection = sq * (1.0 + xx);
193
194 }
195 // G4cout << "G4ionEffectiveCharge: charge= " << charge << " q= " << q
196 // << " chargeCor= " << chargeCorrection
197 // << " e(MeV)= " << kineticEnergy/MeV << G4endl;
198 return effCharge;
199}
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:179
G4double G4Log(G4double x)
Definition: G4Log.hh:226
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
G4double GetZeffective() const
G4double GetFermiEnergy() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:224
G4double GetPDGCharge() const
G4double A13(G4double A) const
Definition: G4Pow.cc:120
G4double A23(G4double A) const
Definition: G4Pow.hh:131

Referenced by G4MicroElecInelasticModel::CrossSectionPerVolume(), EffectiveChargeSquareRatio(), and G4EmCorrections::GetParticleCharge().

◆ EffectiveChargeSquareRatio()

G4double G4ionEffectiveCharge::EffectiveChargeSquareRatio ( const G4ParticleDefinition p,
const G4Material material,
G4double  kineticEnergy 
)
inline

Definition at line 105 of file G4ionEffectiveCharge.hh.

109{
110 G4double charge = effCharge;
111 if( kineticEnergy != lastKinEnergy || material != lastMat || p != lastPart) {
112 charge = EffectiveCharge(p,material,kineticEnergy);
113 }
114 charge *= chargeCorrection*inveplus;
115
116 return charge*charge;
117}
G4double EffectiveCharge(const G4ParticleDefinition *p, const G4Material *material, G4double kineticEnergy)

Referenced by G4EmCorrections::EffectiveChargeSquareRatio().


The documentation for this class was generated from the following files: